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ABSTRACT.  We present several results on moduli spaces of spherical geodesic linkages. It is established that
the signed area function is generically a Morse function on the moduli space of a moderate spherical linkage and its
critical points are given by cyclic configurations of the linkage. Next, we present a number of results on cyclic and
tangential configurations of open spherical linkages. In particular, we give an explicit formula for the spherical
area of a cyclic spherical quadrilateral in terms of the lengths of its sides. Moreover, we prove that the end-point map
of an open moderate spherical linkage is a stable mapping from the moduli space to the ambient sphere. © 2010
Bull. Georg. Natl. Acad. Sci.
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1. We begin by introducing the class of spherical linkages which will be considered in this paper. Let S=S2 be a
unit sphere in three-dimensional Euclidean space R2 and d be the distance function defined by the induced Riemannian
metric on S [1]. Given a natural number k, an open spherical  linkage (or spherical geodesic k-chain) L is defined by
a k-tuple of nonnegative real numbers li < π (called sidelengths of L) [2]. The ambient unit sphere S will be fixed
throughout the paper and one thinks of such a linkage as a chain of geodesic arcs on S. For brevity and visuality, we
will speak of an S-arcade linkage or simply S-arcade. An S-arcade is called moderate if the sum of all sidelengths
does not exceed π.

We will consider two versions of the concept of moduli space of spherical arcade  which are relevant for our
purposes. To this end it is convenient to distinguish between open arcades  (or spherical mechanical arms) and
closed arcades (or spherical polygonal linkages [1]). It is handy to denote an open arcade by M and a closed arcade
by P. When the discussion is applicable to both classes we will say S-arcade and denote it by P.

The configuration space CS(M)  of an open arcade M is defined as the totality of all k-tuples of points vi∈S such
that d(vi,vi+1)=li, i=1,...,k. In the case of a closed arcade P we additionally require that vi+1=v1. Each such collection
of points is called a configuration of arcade. Factoring this set over the natural diagonal action of SO(3) one obtains
the moduli space MS(L) [2]. Thus one can think of configuration as a chain of geodesic arcs of prescribed lengths. As
in the planar case, moduli spaces are endowed with natural topologies induced by distance d making them into
compact topological spaces [2].

Applying a homothety with center at the origin and coefficient R one obtains a spherical linkage R*L with
sidelengths  Rli on sphere SR of radius R and can define its moduli space in SR. It is obvious that the moduli spaces
of L and R*L are homeomorphic. If we multiply all sidelengths by the same number r<1, the corresponding linkage
r*L also has the same moduli space in S as L itself. Moduli spaces of spherical linkages seem to remain poorly
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explored. For this reason we begin with a few general remarks on those moduli spaces following the general approach
suggested in [3] which was already used in our previous note [4].

2. Clearly, the moduli space of a moderate open k-arcade is diffeomorphic to (k-1)-torus Tk-1.  Next, by complete
analogy with the planar case, the moduli space of a linkage L as above can be identified with the subset of
configurations such that v1=(1,0,0),  v2=(cosl1,sinl1,0). Assuming that this is always the case it is easy to see that, for
a closed k-chain P, MS(P) can be represented as a level set of an obvious smooth mapping from (S2)k to Rk, which is
called the linkage mapping (cf. [2]). By a standard application of Ehresmann fibration theorem we conclude that, for
generic values of li, the moduli space MS(P) has a natural structure of compact orientable manifold of dimension  k –
3. It is known that the moduli space is smooth if and only if the closed arcade is nondegenerate, i.e. it does not have
a configuration all vertices of which lie on the same great circle of S. It is obvious that a closed arcade is degenerate
if and only if there exists a k-tuple of “signs” si=±1 such that  Σsili=0.

In the sequel we only deal with moderate arcades, which guarantees that all geodesic segments appearing in the
sequel are well-defined. Obviously, this condition is preserved by homotheties. Notice that all configurations of a
moderate linkage in S with the two vertices fixed as above, belong to the same hemisphere of S. Thus the stereographic
projection Π of S on the tangent plane at point  v1=(1,0,0) defines a one-to-one mapping on MS(L). Since for big R the
distortion of Π is small compared with sidelengths, it appears possible to indentify the moduli space of moderate
spherical arcades with the moduli space of an appropriate planar linkage (see [4]). In this sense the topology of moduli
spaces of moderate arcades is the same as for planar linkages and one can compute a lot of topological invariants in
terms of sidelengths.

If M(L) is smooth one can investigate its topology by considering an appropriate differentiable function on M(L)
and studying its critical points. One of such functions is the signed spherical area A considered in [5] in the case of
spherical quadrilaterals. The first main topic of this note is to investigate configurations which are critical points of A.

3. By analogy with the case of planar polygons, under a cyclic spherical polygon we understand a polygon
which can be inscribed in a circle lying on S, i.e., there exists a point in S (circumcenter) equidistant from all vertices
of the polygon (see, e.g., [1]). Analogously, a spherical polygon P is called tangential if there exists a circle on S
which is tangent to all sides of P. This is naturally applicable to configurations of arcades and so we can speak of
cyclic and tangential configurations. A tangential configuration of an open chain will be called strictly tangential if
the geodesic segment connecting the first and last vertices is tangent to the same circle. Notice that this geodesic
segment, as well as all other geodesic segments we will deal with, are well-defined due to the condition that the arcade
is moderate. We can now formulate the first two main results which generalize similar results for planar linkages
established in [5], [6].

Theorem 1. Let L be a moderate S-arcade with smooth moduli space MS(L). Then all critical points of the
signed spherical area A considered as a function on MS(L) are given by cyclic configurations of L.

We emphasize that this result holds for arbitrary open arcades and nondegenerate closed arcades. In the case of
an open chain one can indicate an additional geometric condition which should be satisfied by a cyclic configuration
which is a critical point of A (cf. [6]). The scheme of proof is the same as in the planar case. We describe the main
steps in the case of closed chain. First, we prove the result for quadrilateral linkages by direct verification using
Lagrange multipliers and standard formulas of spherical trigonometry. Next, it is shown that the geometric  “four-hinge
method” of Steiner [1] is applicable in the spherical case, which enables one to derive the general result from the
quadrilateral case. The case of an open linkage is more complicated and requires developing a proper modification of
the argument used in [5].

Theorem 2. For generic sidelengths, A is a Morse function on MS(L).
This can be proven using the standard paradigm of parametric transversality theorem (cf. [5]). A natural problem

then is to find a way of computing the Morse index of A at a cyclic configuration. For spherical quadrilaterals this was
done in [2], which in virtue of [6] solves the case of an open spherical 3-chain, too. It is also possible to give a
complete solution for spherical pentagons and 4-chains in terms of the sidelengths and combinatorics of the cyclic
configuration.

A relevant combinatorial invariant is the number N(V) of intersection points of the sides in a given configuration
V of L. For a pentagon, the moduli space is two-dimensional and it is easy to see that the values of number N(V) can
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be 0, 1, 2, 5. For N=0 we have a global extremum (maximum or minimum depending on the orientation) and for N=5 a
local extremum, while cyclic configurations with  N=1, 2 are saddle points (Morse index is equal to 1). Thus for
pentagons the Morse indices can be computed  similarly to the planar case investigated earlier by G.Bibileishvili and
E.Elerdashvili. However, we were unable to get a complete answer for hexagons either in spherical, or in planar case,
more so for k-chains with arbitrary k > 5.

4. We present now several remarks on cyclic and tangential configurations of  spherical arcades. They generalize
similar statements for cyclic configurations of planar mechanical arms presented in [5] and can be proved by an
evident modification of the argument given in [5]. Notice that a notion of convexity is naturally defined for each
subset of S with diameter not exceeding π, in particular,  for each configuration of a moderate arcade.

Proposition 1. The set of cyclic configurations of an open moderate arcade is one-dimensional and always
contains an arc of convex configurations. A closed moderate arcade always has a unique convex cyclic configuration.

Proposition 2.  The set of tangential configurations of an open moderate arcade is one-dimensional and always
contains an arc of convex configuration. If arcade is regular it always has a strictly tangential convex configuration.

For a closed 4-arcade, one can obtain a number of results on the geometry of its convex cyclic configuration in
the spirit of [9].  Let P(a′,b′,c′,d ′) be a closed moderate arcade on S and Q its convex cyclic configuration (it is unique
by Proposition 1). The radius R of the circumscribed circle of Q in S and its area A can be computed in terms of
sidelengths. For positive numbers q, r, s  with 2p = q + r + s < π, let A(q,r,s) denote the (nonoriented) area of a
spherical triangle with the sides q, r, s. Recall that number A(q,r,s) can be computed by L’Huillier formula ([1], p.73):

( , , ) 4 .
2 2 2 2
p p q p r p sA q r s arctg tg tg tg tg− − −

=

Proposition 3.  For a cyclic quadrilateral Q(a′,b′,c′,d ′)  on S,  its circumradius R and spherical area A are given by
formulas

( )( )( )arcsin
( )( )( )( )
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A=A(R,R,a) + A(R,R,b) + A(R,R,c) + A(R,R,d), (2)

where  2sin , 2sin , 2sin , 2sin .
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Formula (2) can be considered as a spherical analog of the classical Brahmagupta formula for the area of a cyclic
quadrilateral. Comparison of (2) with a more simple-minded direct generalization of the Brahmagupta formula presented
in [2] shows that, contrary to the claim in [2], the direct generalization is not reasonable. The proof of the proposition
goes as follows.

First, we find the circumradius R. To this end, let C be the circumcenter of Q and OC the corresponding radius of
S. Since all vertices of Q lie on a circle, they lie in a certain plane W orthogonal to OC. Let D W OC= ∩   be the
circumcenter of a planar cyclic quadrilateral Q ′ formed by the vertices of Q.  The sides of Q ′ are chords of the sides

of Q and they can be found by elementary geometry: 2sin , 2sin ,
2 2
a ba b

′ ′
= =   etc. By [9] the circumradius r of

cyclic quadrilateral Q ′  can be found by the formula

( )( )( ) .
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ab cd ac bd ad bcr
a b c d a b c d a b c d a b c d

+ + +
=

− + + + − + + + − + + + −

The circumradii of Q ′ and Q are related by formulas r = sin R, R = arcsin r, which  immediately gives formula (1).
Since Q is convex, its area is equal to the sum of areas of four spherical triangles with the sides (R,R,a), (R,R,b),
(R,R,c), (R,R,d) and formula (2) is also immediate.
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We emphasize that formula (2) is quite explicit since each of the summands can be computed by L’Huillier formula.
The simple considerations used in the proof are applicable to cyclic arcades with an arbitrary number of sides, which
gives a similar explicit formula for the area of an arbitrary cyclic polygon. These formulas enable one to use computer
to calculate the Hessian of area and calculate Morse indices along the lines of [3]. Using methods of [3] one can also
obtain an explicit formula for the number of different cyclic configurations of a given spherical linkage.

5. In conclusion we present a few remarks concerned with the end-point map EM of an open (k+1)-arcade M
which is defined on the moduli space of  M  in a natural way. Namely, we fix the position of the first side and identify
moduli space MS(M) with the k-torus T k consisting of collections α of  k  angles α i between the consecutive sides
of M. For each such á, one defines EM(α) to be the point of S obtained as the position of the last vertex. In this way
we get a well-defined map E=EM: Tk → S. It is easy to show that E is smooth (infinite differentiable). Hence we may
consider its differential DE(α) at a given point α ∈Tk which can be interpreted as a linear mapping from Rk to the two-
dimensional tangent plane TqS  at the point q = E(α). Let KerDE(α) denote its kernel which is a (k-2)-dimensional
subspace.  In a local chart near point q the tangent planes to S can be identified with R2. Then differential DE(α) is
represented by a (2×k)-matrix and its kernel is the kernel of this matrix. We endow T k with a canonical flat Riemannian
metric induced from its universal covering space Rk and denote by H(α)  the orthogonal complement to KerDE(α). In
this way we obtain a two-dimensional distribution H(E) on T k called the horizontal distribution with respect to E and
can consider horizontal lifts of paths in the target [8].

Theorem 3. For a moderate open spherical k-arm M, the end-point map EM is stable and its singular set is a
union of several concentric circles of fold points.

Proof. One can use local coordinates and consider the tangent map TE interpreted  as a linear map from the
universal cover of T k  into a plane representing TqS. Without loss of generality we can put q = (1,0,0) and identify TqS
with the vertical plane with coordinates (y, z). Then TE can be represented by a (2×k)-matrix whose elements are
partial derivatives with respect to angles αi. Each partial derivative can be computed using the known formulas for
infinitesimal variations of the elements of a spherical triangle [1] and vanishing of its (2×2)-minors is easily seen to be
equivalent to the fact that each αi is equal either to 0 or to π. It is now obvious that the critical set consists of several
circles obtained by choosing various combinations of these values of angles αi. From the expressions for the elements
of TE it follows that they can never vanish simultaneously, in other words, the rankTE=1 at each critical point. This
means that each critical point is a fold point [7] and by the classical result of H. Whitney the map EM is stable.

We believe that this result is of interest since it is in the spirit of some general constructions from [8] and [9]. In
particular, one can apply the general argument from [8] (p. 88) to construct horizontal lifts of paths in the image of EM
and describe the leaves of arising foliation as orbits of an appropriate Lie group. As was shown in [9] in the case of
a planar 3-arm, one can also calculate the holonomy Lie algebra at each point of moduli space and derive interesting
conclusions about the controllability of configurations. In the case of a closed arcade one can consider similar topics
for the gravicenter mapping of the moduli space into S defined by sending each configuration to its center of mass.
These and other natural developments in the spirit of [8] and [9] are delayed for further publications. Another
interesting perspective is to extend the setting of this paper to geodesic linkages in homogeneous spaces of Lie
groups.
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maTematika

sferuli saxsruli jaWvebis Sesaxeb

g. giorgaZe*, g. ximSiaSvili**

* i. javaxiSvilis sax. Tbilisis saxelmwifo universiteti da kibernetikis instituti
* ilias saxelmwifo universiteti da a. razmaZis maTematikis instituti

(warmodgenilia akademikos r. gamyreliZis mier)

naSromSi ganxilulia sferuli geodeziuri saxsruli jaWvis modulebis sivrcesTan
dakavSirebuli amocanebi. dadgenilia, rom orientirebuli farTobis funqcia warmoadgens morsis
funqcias  modulebis sivrceze da misi kritikuli wertilebia wrewirSi Caxazvadi konfiguraciebi.
miRebulia wrewirSi Caxazvadi sferuli oTxkuTxedis farTobis formula misi gverdebis terminebSi.
naCvenebia agreTve, rom sferul saxsrul jaWvTan asocirebuli asaxva mdgradia da misi
gansakuTrebulobaTa simravle Sedgeba ramdenime wrewirisgan.
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