
saqarTvelos  mecnierebaTa  erovnuli  akademiis  moambe ,   t. 4,  # 2,  2010
BULLETIN  OF  THE  GEORGIAN  NATIONAL  ACADEMY  OF  SCIENCES, vol. 4,  no. 2,  2010

 

© 2010  Bull. Georg. Natl. Acad. Sci.

Materials Science

Two-Phase Segregation of Irregular Fluid Al-Zn-Sn
Solution

George Gordeziani*, Alexander Gordeziani*, Mikheil Okrosashvili*

* Georgian Technical University, Tbilisi

(Presented by Academy Member Irakli Zhordania)

ABSTRACT. Based on the canonical form of the Swallowtail catastrophe a new form of Gibbs potential is worked
out, which is used for thermodynamic analysis of irregular ternary systems. By means of minimization of above
mentioned potential and by the use of Lagrange transformation the numerical values of coordinates of critical
point are calculated for irregular fluid Al-Sn-Zn solution, as the result of which we have determined the process
of two-phase segregation of the given solution with the formation of an immiscibility gap.  © 2010 Bull. Georg.
Natl. Acad. Sci.
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The study and definition of segregation processes
is a matter of highly topical interest, allowing to judge
the advisability of application of a given alloy for
different purposes. The segregation processes have a
negative effect on structural alloys. At the same time
these processes contribute to the development of com-
posite materials. For experimental study of such
processes the traditional methods of X-ray diffraction
(XRD) are used. However, application of this method to
measuring the parameters of crystal lattice is rendered
difficult in multi-component systems.

The theoretical investigation of a three-component
Al-Zn-Sn system is presented in this paper. The
experimental studies [1] have shown that the thermal
effects are especially increased due to the significant
composition change during the process of crystallization.

For thermodynamic analysis of irregular ternary
solutions, a new form Gibbs potential (1) is worked out,
which is an equivalent to the “swallowtail” catastrophe
[2]:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3
0 1 2 3

2 3
0 1 2 3

2 3
0 1 2 3

2 2 2
0 1 2

0 0 0
1 2 3 .

n n n

G zx A A z x A z x A z x

zy B B z y B z y B z y

yx C C y x C y x C y x

x yzD xy zD xyz D

RT x l x y l y z l z

G x G y G z

⎡ ⎤= + − + − + − +⎢ ⎥⎣ ⎦
⎡ ⎤+ + − + − + − +⎢ ⎥⎣ ⎦
⎡ ⎤+ + − + − + − +⎢ ⎥⎣ ⎦

+ + + +

⎡ ⎤+ + + +⎣ ⎦

+ + +

(1)

Here Ai, Bi and Ci are four-member coefficients of
binary interaction; Di is the three-member coefficient of
ternary interaction. They consist of parts linearly
dependent and independent on temperature:

TAAA itioi += , TBBB itioi += , TCCC itioi +=  and

TDDD itioi += , R - constant of entropy, which is equal
to 8.31 Joule; T - temperature, K; 0G1, 0G2, 0G3 -
potentials of  pure elements;  x , y, z - mass fractions of
constituent elements, where z=1-x-y.
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The theoretical basis of the given investigation is
an analysis of the critical point of irregular three-
component solution by means of minimization of Gibbs
potential and by the use of Lagrange transformation.

According to the method of Lagrange transfor-
mation, the Cartesian coordinate system is the substitute
for the initial coordinate system. The possibility of such
transformation follows from an explanation of the critical
point, where the degree of freedom F is the feature of
the system and does not depend on the group of discrete
coordinates. According to Lagrange: F=n-m, where n is
the number of coordinates, m is the amount of limitation.
For our case, n=3 and m=2; i.e. we have two limitations
(z=1-x-y; 0<x+y<1) and three coordinates: (x,y,z).
Accordingly, the degree of freedom is equal to one,
which enables to carry out transformation of one of the
axes of coordinates (in our case - x). As a result, the
Cartesian coordinate x’ replaces the coordinate x and
connects with the initial one by means of the coefficient

xϕ : yxx xϕ+=' . The coordinate y is not changed, i.e.
y=y’. Accordingly, for the second derivatives we have:
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According to the proposed mathematical method of
analysis, an irregular three-component solution will be
segregated into two isomorphic phases, if we calculate
such numerical values for the critical temperature and
critical concentrations, which will simultaneously equate
to zero the Hessian matrix determinant (2) and the third
derivative of Gibbs potential (3):

( ) ,02 =−= xyyyxx GGGH (2)

( ) ( ) 033 32 =+++ yyyxxyxxxyxxxx GGGG ϕϕϕ (3)

Based on the above mentioned, it became necessary
to differentiate the Gibbs potential to the third order,
where the cr itical temperature T and critical
concentrations x, y are unknown members. For
calculation of these variables we have used standard
computer programs: Goal “Seek” and “Solver”. The

Table

The coefficients of binary and ternary interaction (Ki=K0i+KtiT) for irregular fluid Al-Sn-Zn solution; i=0,1,2,3.

 Binary  and 
ternary 
systems 

Members of  coefficients independent on 
the temperature  K0i(A0i, B0i,C0i,D0i) 

Members of coefficients linearly dependent  
on  the temperature  Kti(Ati,Bti,C ti,Dti) 

K00 K01 K02 K03 KT0 KT1 KT2 KT3 
Al–Zn 10288 -810.56 -6452 578.12 -3.35 5.28 2.75 -2.43 

Al–Sn 7998.78 4403.24 3209.13 344.76 -4.41 -2.37 -4.21 1.79 

Zn–Sn 12592 -5064 -2893 255.28 -8.72 3.19 -1.94 2.57 
Al-Zn-Sn 9518.53 -6930 7754.65 473.44 -41.83 -2.46 6.88 -3.12

Fig.1. Isothermal section of irregular fluid Al-Sn-Zn solution
segregated into two isomorphic phases at 500K
temperature

Fig. 2. Diagram of elements concentrations dependency on the
Gibbs potential of  irregular  fluid Al-Zn-Sn solution,
segregated into two isomorphic  phases at 500K
temperature
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numerical values of interaction coefficients: Ai, Bi, Ci, Di
are known from the database of alloy systems [3], which
are presented in the Table:

As a result, the numerical values of Lagrange
transformation coefficient jx=0.144  and the coordinates
of the critical point Tcr=517.25 K; xcr=0.53(Al);
ycr=0.44(Zn); zcr=1-xcr-ycr=0.03(Sn) are calculated for an
irregular fluid Al-Sn-Zn solution. On  the  basis  of  these
values  the process  of  segregation  of  this  solution
into two  isomorphic  phases  below  the  critical  tempe-
rature is  determined.

The isothermal section (Fig.1) of two-phase
segregation diagram of irregular fluid Al-Zn-Sn solution
and the diagram of elements concentrations dependency

on the Gibbs potential (Fig.2) are built by the use of
CALPHAD [4] at 500K temperature.

The equilibrium concentrations have been calculated
for the segregated phases at 500K temperature:

Al1=0.51, Zn1=0.32, Sn1=0.17; Al2=0.11,
Zn2=0.64,    Sn2=0.25

The formation of thermodynamic model of three
component system alloys is possible by the use of an
equivalent form of catastrophe theory. With the help of
this model it is possible to calculate the numerical values
of coordinates of critical points for irregular ternary
solutions. The phase segregation process with the
immiscibility gap formation will be determined on the
basis of these values for a given solution.
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katastrofebis Teoriis A4(maqaoni) kanonikur formaze dayrdnobiT SemuSavda gibsis
potencialis axali forma, romelic gamoiyeneba araregularuli samkomponentiani sistemebis
Termodinamikuri analizisaTvis. miRebuli potencialis minimizaciiT da lagranJis gardaqmnis
gamoyenebiT gaangariSda kritikuli wertilis koordinatebis ricxviTi mniSvnelobebi araregu-
laruli Txevadi Al-Zn-Sn xsnarisTvis, romlis safuZvelze dadginda mocemuli xsnaris or fazad
ganSrevebis procesis mimdinareoba Seurevlobis areebis warmoqmniT.
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