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ABSTRACT. New sequential method of testing many hypotheses based on special properties of decision-making
areas in the conditional Bayesian task of testing many hypotheses is offered. The results of research of the
properties of this method are given. They show the consistency, simplicity and optimality of the obtained results in
the sense of the chosen criterion, which consists in the upper restriction of the probability of the error of one kind
and the minimization of the probability of the error of the second kind. The examples of testing of hypotheses for
the case of the sequential independent sample from the multidimensional normal law of probability distribution
with correlated components are cited. They show the high quality of the offered methods. © 2070 Bull. Georg.
Natl. Acad. Sci.
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1. Introduction

Sequential methods were first developed by Wald [1, 2] and Barnard [3]. The historical development of this
subject is nicely described in Ghosh & Sen [4]. The properties of optimality of this method were investigated in Wald
[1, 2, 5], and so did many other authors: Girshick [6, 7], Ghosh [8], Siegmund [9] and others). Some time later the
development of Bayesian sequential procedures started: Arrow, Blackwell, & Girshick [10], Ray [11], Barnard [12],
Anscombe [13], Berger [14] and others). The essence of these procedures consists in minimization of the risk which
is defined as the average cost of taking observations plus the average loss resulting from erroneous decisions. A
number of sequential criteria for testing many hypotheses are known. Their logical development are sequentially
rejective multiple test methods, which include a modified Bonferroni procedure with a greater power than the Bonferroni
procedure, offered by Holm [15, 16]. In Shiryaev [17] it was shown that the search for Bayesian decision rules could
be reduced to solving a problem of optimal stopping for the Markov random function constructed in a special manner.
In the work of Bartroff [18], multistage tests of simple hypotheses are described. Using a loss function, which is a
linear combination of sampling costs and error probabilities, these tests are shown to minimize the integrated risk to
second order as the costs per stage and per observation approach zero.

The methods of sequential analysis described in the above-mentioned works (Wald’s method and the method
based on the Bayesian approach) are quite simple, graphic and convenient for practical realization, but unfortunately,
only for the case of two hypotheses. For an arbitrary number of hypotheses, the problem becomes significantly
complex, and it has not been solved completely in the sense of classical statements of both the sequential criterion
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based on the sequential probability ratio test (Wald statement) and the minimization of the sum of Bayesian risk
calculated for sequentially incoming observation results and the cost of obtaining of the same results of the experiment.
However, there are different possible procedures offered both by Wald [1, 2], and other authors (see, for example,
Berger [14]) for solving the problem for an arbitrary number of hypotheses, but, as a rule, they do not possess the
optimal properties in the scope of the chosen criteria or these properties are still not completely investigated.

Below we offer new methods of sequential analysis for testing many hypotheses, which are based on the specific
properties of decision-making areas in conditional Bayesian problems of testing many hypotheses [19, 20]. For
simplicity and clarity of the offered sequential method, let us briefly describe one of the mentioned conditional
Bayesian problems of testing many hypotheses and the properties of their decision-making areas.

2. Conditional Bayesian problem of testing many hypotheses

Let us consider n-dimensional random observation vector x” = (x,,...,x,) with probability distribution density
p(x,0) = p(x,...,x,;6,,...,0,) , given on o-algebra of Borel set of space R" (x € R"), which is called the sample
space. By o' = (6,,...,0,) is designated the vector of parameters of distribution. In general, n # & . Letin k-dimensional
parametrical space ® be given S possible values of considered parameters 0" = o, ... H,i) ,i=1,..,8, i.e. 8 eOF;
Vi:i=1,..,S. On the basis of x" =(x,,...,x,) it is necessary to make the decision namely by which distribution
p(x,0"),i=1,...,S, the sample x is born.

Let us introduce designations: H; : 6 = @' is the hypothesis that the sample x” = (x,,...,x,) is born by distribution

p(x,0) = p(xl,...,xn;o9f,...,0,£) =p(x|H;),=1,...,8; p(H;) is the a priori probability of hypothesis H;.

1

Conditional Bayesian task has the following form (see [19, 20]). Find such a decision rule, i.e. such decision-

making areas I';,I",,...,I'g that

s s
r(;:Zp(Hi) Z J.p(x\Hi)dx:nll_ina (eAY
i=1 J=lij#T, T
at restrictions
s
1= p(H) [ plx | H)dv < a. 22)
i=1 T,
The solution of this problem is
s
T, =4x: > p(H)p(x|H)<A-p(H)p(x|H)){, j=1,..5, 23)
i=li#j

where A is determined so that in (2.2) the equality takes place.

Task (2.1), (2.2) is one of possible formulations of the conditional Bayesian problem. In a similar manner, we can
introduce and solve a set of other conditional Bayesian tasks which we omit here for conciseness.

The investigation of the properties of the decision-making areas (2.3) shows that, if A=1, then for decision-making

s
areas there take place F[ﬂr_/ =0 and UFI. =R", where R" is the observation space, i.e. on the basis of any
i=1

observation result x one of the tested hypotheses H;, i=1,...,S, is accepted without fail.

At violation of this condition, depending on the values of undetermined Lagrange coefficient (the value of which
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is determined by the significance level of the criterion, i.e. by the value of &), for the considered task in observation

space R", the subareas of intersection of some (or, in a particular case, all) decision-making areas (let us call these
areas the ambiguous areas of decision) could exist concurrently with the subareas which do not belong to any of the
decision-making areas (let us call these areas the impossible areas of decision). In particular, at 1 >1, there takes place

s
U T;> 1:]. . This is available only ifarea I"; of acceptance of hypothesis H ; intersects with one or more (in the limit,

i=li#j

with all) areas of acceptance of other hypotheses. At 4 <1, there takes place LSJ T, e 1:1' . Thus, in the observation
i=lizj
space R", there are such subareas which do not belong to any area of acceptance of the tested hypotheses.

Thus, the situation is similar to the sequential analysis in the case when, on the basis of present observation
results, it could be impossible to make a decision (with the given probabilities of errors) about the validity of one of
the hypotheses from the considered set. Therefore, in the considered task, if there emerges the situation of impossibility
of making an ambiguous or any decision for the given significance level, we shall continue the observations until
such an opportunity appears. For this reason, let us determine the expressions for the areas of acceptance of each of
the tested hypotheses and of rejection of any of the tested hypotheses on the basis of the given number of sequentially
obtained observation results. Thus, on the basis of the above-considered conditional Bayesian task, let us determine
the methods of sequential analysis for testing many hypotheses. For clarity let us call this method the sequential
analysis method of Bayesian type.

3. The method of sequential analysis of Bayesian type

Let us suppose that there is an opportunity of obtaining repeated observations. In order to introduce the method
of sequential analysis for an arbitrary number of hypotheses on the basis of the above-considered conditional

Bayesian task, let us use the designations introduced by Wald [1, 2]. Let R}, be the sampling space of all possible

samples of m independent n-dimensional observation vectors x = (x;,...,x, ). Letus split R, into $+1 disjoint subareas

n
m,l»

2w Ry g0 Riy g1 Let p(x',...,x™ | H;) be the total probability distribution density of m independent n-
dimensional observation vectors. Then p(xl,...,x'" |H;)= p(xl |H;)--- p(x" | H)).
Let us determine the following decision rule. If the matrix of observation results x = (xl,...,x'") belongs to the

subarea R, ;, i=1,...,S, then hypothesis H; is accepted, and, if x = (xl,...,xm) belongs to the subarea R, ., , the

decision is not made, and the observations go on until one of the tested hypotheses is accepted.

Areas R, i=1,..,S+1,are determined in the following way: R) ;, i=1,...,S, is such a part of acceptance area

I/ of hypothesis H; which does not belong to any other area I, j=1,...,i-Li+L...S; R} ¢, is such a part of

sampling space R, which belongs simultaneously to more than one area """, i =1,...,S , or it does not belong to any

of these areas. Here the index m (m=1,2,...) points to the fact that the areas are determined on the basis of m sequential
observation results.

Let us designate the population of subareas of intersections of acceptance areas I'}" of hypotheses H; (i=1,...,5)

in conditional Bayesian task of hypothesis testing with the areas of acceptance of other hypotheses H,,

s
J=L..,8; j#i, by I". By E, =R}, —UF;” , we designate the population of areas of space R,, which do not
i=1

belong to any of hypotheses acceptance areas. Then the decision acceptance areas in the method of sequential

Bull. Georg. Natl. Acad. Sci., vol. 4, no. 2, 2010



About Using Sequential Analysis Approach for Testing Many Hypotheses 23

analysis of Bayesian type are determined in the following way.

At 1>1,
R,’,’U. = F:.” /Il-m, i=1..,5;
S
Z,S+1 :Ulim .

i=1

At <1
R,’,’U. =F;", i=1..S5;
Zz,s+1 :E,Z'

At =1

n m .
R, =T/, i=L.,§;
n —
m,S+1 =0 .

Here areas '/, 1", E),

m?2

i=1..,5, are defined on the basis of decision-making areas (2.3) in conditional
Bayesian task.

4. Consistency and uniqueness of sequential analysis method of Bayesian type

Let us designate: M, and M, are the first and the second methods of testing of statistical hypotheses; «, S, are
the probabilities of errors of the first and the second kinds, respectively, corresponding to the methods M,, i=1,2, at
the identical number of observations. Let us introduce the following definition.

Definition. The method of testing of statistical hypotheses M| rigorously surpasses the method M, if there take
place o <a, and B,<p,.

For clarity, from here on, by ; and S,, we shall designate the probabilities of errors of the first and the second
kinds for sequential method of Bayesian type, and, by a and g, the same quantities for conditional Bayesian task. The
theorems confirming the consistency and uniqueness of the offered sequential analysis method of Bayesian type are
given below without proving.

Proposition 1. If the probability distribution p(x|H,), i=1,...,S, is such that an increase in the sample size m

entails a decrease in the entropy concerning distribution parameters 6 about which the hypotheses are formulated,
then infinitely increasing number of repeated observations, i.e. m — o in the sequential analysis method of Bayesian

type, entails infinite decreasing probabilities of errors of the first and the second kinds, i.e. oy >0 and f —0.

Lemma 1. In the conditions of theorem 1, at increasing divergence J(H,;,H ) between tested hypotheses H,

and H;, i,j=L1..,8;i#j, Lagrange coefficient A in solution (2.3) decreases, and, in the limit, at

I{nlr}l J(H;,H;) > ®, 30 takes place for the given a.
ij

Hereinafter we shall suppose that probability distributions p(x|H;), i=1,...,S, are such that increasing
information causes a decrease in the entropy relative to parameter & which the hypotheses are formulated about.

Proposition 2. For any given sample size m and as small errors of the first and the second kinds o' and ' as
one likes, there always exists such a positive value J* that, if the divergence between tested hypotheses is more

than that value, i.e. r{nlr}l J(H;,H;)> J, ay(J)<a' and B(J)< B’ hold true, i.e. the method of sequential analysis
i

of Bayesian type rigorously surpasses the criterion with errors of the first and the second kinds equal to o' and
f Bay pe rig ly surp q

B, respectively.

Proposition 3. For any value of « in conditional Bayesian task there always exists such an integer m" that if
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the number of repeated observations m, in the method of sequential analysis of Bayesian type, is more than this

value, i.e. m>m’ , there will be accepted one of the tested hypotheses with the probability equal to unity.

5. Experimental research

To illustrate the correctness of the above-mentioned results and showing the quality of the offered methods in
practice, let us bring the calculation results of some examples for the cases when sequentially accepted observation
results are normally distributed independent random variables. In the example where the number of hypotheses is
equal to two are also given the results of operation of the Wald method with parameters: «=0.05 and £=0.05.
Consequently, the decision-making thresholds for this criterion are equal to B=0.05263 and 4=19.

Example 1. Tested hypotheses: H,:a =l,ay=1, H,:a’ =4,a2 =4. A priori probabilities of hypotheses:
p(H,)=0.5, p(H,)=0.5.The significance level of the criterion in conditional Bayesian task is =0.05. The parameters
of sequentially incoming observation results as a two-dimensional normally distributed random vector with the

. . . . 0
mathematical expectation a=(4;4) and the covariance matrix W = .
0 1

To save room, let us describe the obtained results without going into details. Totally there were generated 60
sequentially incoming observation results on the basis of which, in the sequential Wald criterion decisions were made
36 times, of these 18 decisions were made on the basis of 1 observation result, 14 - on the basis of 2 observation
results, 3 - on the basis of 3 observation results and 1 decision - on the basis of 5 observation results. In a sequential
method of Bayesian type, decisions were made 52 times, of which 47 decisions were made on the basis of 1 observation
result, 3 - on the basis of 2 observation results, 1 - on the basis of 3 observation results and 1 - on the basis of 4
observation results. All decisions are correct. The average number of observation results necessary for decision-

making is equal to: in the Wald criterion - 7, =1.6666(6) ; in the sequential method of Bayesian type - ny =1.1538.
The average probabilities of errors of the first and the second kinds in sequential method of Bayesian type at

decision-making are equal to: on the basis of one observation - &' =0.00469 and f'=0.05 (4 =0.13246); on the
basis of two observations - o'=6.65-10"° and f'=0.05 (1 =0.00029); on the basis of three observations -
a' =5.85-10° and S '=0.05 (1=3.34-10"); on the basis of four observations o' =3.9:10""2 and A =0.05
(1=2.7-10").

Example 2. Tested hypotheses: H,:af =la,=1, H,:a' =4,a2 =4, H,:a =8,a=8 and
H, :a]4 = 12,ag =12 . Apriori probabilities of hypotheses: p(H,)=1/4, p(H,)=1/4, p(H;)=1/4, p(H,)=1/4.

The significance level of the criterion in conditional Bayesian task is ¢=0.05. The parameters of sequentially incoming
observation results as a two-dimensional normally distributed random vector with the mathematical expectation a=(4;4)

. . 10 9
and the covariance matrix W = .

9 10

To save room, let us describe the obtained results without going into details. Totally there were generated 40
sequentially incoming observation results on the basis of which, in sequential method of Bayesian type, decisions
were made 15 times; from them 8 decisions were made on the basis of 2 observation results, 4 - on the basis of 3
observation results and 3 - on the basis of 4 observation results. All decisions are correct except of one case when,
instead of the second hypothesis, the first one is accepted on the basis of two, the sixteenth and the seventeenth,
observation results (arithmetic mean of these observation results on the basis of which the decision is made is equal

to (x4 +x7)/2=1(0.0389;1.2279) ). The average number of observation results necessary for decision-making is

equal to nz; =2.66(6). The average probabilities of errors of the first and the second kinds in sequential method of
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Bayesian type at hypotheses testing are equal to: on the basis of two observations - @, =0.128 and f'=0.05
(A =2.455); on the basis of three observations - a,, =0.052 and S’ =0.05 (1=1.925) and on the basis of four
observations - a,, =0.00866(6) and £'=0.05 (1 =1.465), respectively.

6. Conclusion

From the above-mentioned it is obvious that the offered new method of sequential analysis of many hypotheses
is convenient, unified and clear for use with the purpose of hypotheses testing for any number of tested hypotheses.
In these methods the criterion of optimality is a restriction from above of the probability of error of one kind and
minimization of the probability of error of the second kind. The adduced examples demonstrate high quality of the
offered methods at testing hypotheses in different situations which differ both by the divergence between the
hypotheses and the number of tested hypotheses. The offered sequential methods are quite reliable, they do not need
a great number of observation results for hypotheses testing and each decision made is accompanied by calculated
values of the probabilities of errors of both kinds.
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