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ABSTRACT. The phenomenon of regularization of geostationary satellite’s fragments created after its explosion
has been investigated. The formula for calculation of the moments of minimal dispersion of the fragments’ orbital
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Introduction. The fragments created by explosion
of geostationary satellites (GS) scatter in space in every
direction. Their space orientation at the initial moment is
subject to a certain regularity but in the process of
evolution it gradually assumes random character.

For 12 GS the evolution of the behavior of ensem-
bles consisting of 32 fragments ejected by explosion at
velocity of 75 m/s has been studied on the basis of their
motion theory [1–6].

Computer modeling of orbital evolution shows that
many years after explosion the orientations of the orbits
of fragments are ordered anew. This phenomenon was
called regularization of the orbits of fragments [7–9].

We shall discuss a simplified variant of regularization:
we assume that before explosion the GS moved on circular
orbit; we shall introduce other simplifications later.

Initial equations. To detrermine the geometric sense
of regularization let us discuss Fig. 1 [8, 9], which
represents a projection of part of the celestial sphere on
tangent plane in the vicinity of the North pole of Laplace
plane.

After explosion every fragment gains its own Laplace
plane pole. These poles are disposed on a great circle of
the sky passing celestial poles and the initial Laplace
plane pole, which GS had before explosion.

The fragments analogously gain their own poles of
orbital plane in the vicinity of the initial orbital pole.

Just after the moment of explosion, the poles of the
fragments’ orbits begin precession around their own
Laplace plane’s poles. Later we shall see that the speeds
of precession for different fragments slightly differ from
one another.

The inclination of Laplace plane to the equator is
described by formula [10]:
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mE, mL and mS consequently denote the masses of the
Earth, the Moon and the Sun, a and aE are the radii of
GS orbit and the Earth and , ,L Sn n n  - diurnal motions
of GS, the Moon and the Sun, expressed in radians.

For GS
7.34 .β = ° (2)
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The differentiation of (1) with respect to variable a,
and substitution in the result of the typical parameters
for geostationary orbit (a = 6.63 aE) gives:

0.0695 3.98 .d
da
β

= = ° (3)

To determine the variation of the orbital elements of
fragments because of explosion let us use the energy
integral of two-body problem:
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where k denotes the gravitational constant and r the
distance between the Earth and GS.

Because GS was moving on the circular orbit before
the explosion, at that time r = a.

At the moment of explosion only the quantities V
and a vary in (4). Hence, the differentiation of (4) with
respect to variable a brings about the replacement of
the semi-major axis of fragment’s orbit with
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where Vc and ΔVT  respectively denote the circular
velocity of the GS and the tangent component of the
speed of fragment’s ejection ΔV.

On the other hand, the inclination of the fragment’s
orbit to the initial orbit of GS is equal to:
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where ΔVp denotes the polar component of ΔV velocity.

The simplification of (5) and (6) is possible because
of smallness of the speed of fragments’ ejection relative
to the circular velocity on the orbit (Vc = 3.07 km/s).
From expressions (5) and (6) it is clear that Δa and Δi
are independent quantities but their values are restricted
by the inequality:

2 2 2 ,T pV V VΔ ≥ Δ + Δ (7)

Substituting in (7) expressions (3), (5) and (6) one
can receive:

L = 1.32°,  F  = 1.43°,
where L and F respectively denote the maximal values
of Δβ and Δi.

Further simplification of the problem is possible
using Lagrange equations [6, 9, 11]:
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Ω and ΩL respectively denote the longitudes of these
nodes of GS and lunar orbits, i is the inclination of the

GS orbit to the Laplace plane and z� , Ω�  and LΩ�  denote
the middle values of corresponding variables’ derivatives
with respect to  time.

So, the smallness of m allows us to propose that
because of precession, the inclination i and the velocity

z�  (as well as Ω� ) are constants.

Fig. 1. The dispposition of poles of GS fragments orbits and Laplace planes at the moment of explosion.
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The evolution of the poles of fragments’ orbital
planes. In the case of the above-mentioned simplifica-
tions the evolution of fragments’ orbital planes assumes
the following form.

Let us fit the origin of co-ordinates with the pole of
the initial Laplace plane and the X-axis direct to the
orbital pole of GS, whose X-coordinate we denote by
the D(0) symbol.

Let us note that

1 2(0) , , ,D tgi uϕ ϕ= = = Ω (10)
where the argument of the latitude for the point of
explosion u and the longitude of the GS orbital node is
counted relative to GS Laplace plane.

In such co-ordinate system the co-ordinates of the
Laplace plane pole for some fragment can be described
as follows:

0 0( ) sin cos , ( ) sin sin .x L y L uψ ψ ψ ψ= Ω = (11)
where ψ denotes a parameter proportional to the value
of ΔVT.

Let us respectively denote the length of the segment
between this pole and the GS orbital pole and the angle
with X-axis and segment by D(ψ) and ε(ψ) symbols. Then
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From inequality (7) we have that the orbital pole of
this fragment will be deployed on the straight segment
between the points with co-ordinates:
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As a result of the precession every such segment
will turn around its own center (having x0(ψ) and y0(ψ)
coordinates) by the same angle:

,tθ = Ω� (14)
where t denotes the time after the explosion.

As a result of turning the coordinates of the
segment’s ends will become:
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When ψ varies between 0 and 2π, the poles of
Laplace planes pass all the possible positions and the
contour consisting of the geometric places of points
x1,2(θ), y1,2(θ) restricts the area occupied by the
fragments’ orbital poles in  x, y phase plane.

The system (15) is an equation of ellipse in parametric
form. In the case when its semi-minor axis becomes zero,
the ellipse degenerates into a segment and we shall
obtain the regularization of the fragments’ orbits.

To solve this problem let us write the equation for
the radius of the ellipse based on system (15):
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Equation to zero of the partial derivative of (16) with
respect to θ-parameter gives us the value of ψe,
corresponding to the extreme of the ellipse’s radius:
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Substituting expression (17) in (16) and equating its
left hand side to zero, after simplification we shall obtain:

cos(2 2 ) 1.eu θ+ Ω + = − (18)
hence
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where n is a whole number.
In conditions of our simplifications the equality (19)

is the necessary and enough condition for the regula-
rization of GS fragments’ orbits. Taking the  ignored terms
into consideration is followed by the bending of ellipse
(15) and as a result the dispersion of fragments’ orbital
poles grows in the course of time and can never become
zero.
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geostacionaruli Tanamgzavris afeTqebisas warmoqmnil
fragmentTa orbitebis regularizaciis Sesaxeb
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akademiis wevri, ilias saxelmwifo universiteti, e.xaraZis saqarTvelos astrofizikuri observatoria

Seswavlilia geostacionaruli Tanamgzavris afeTqebisas warmoqmnil fragmentTa orbitebis
regularizaciis movlena. miRebulia formula im momentebis gamosaTvlelad, roca fragmentebis
orbitTa sibrtyeebis polusTa mdebareobebs minimaluri dispersia gaaCnia.
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