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ABSTRACT. For the Lie algebra over the ring the lattice of cosets is constructed. Necessary and sufficient
conditions for distributivity, modularity, semimodularity of coset lattices are found. The fundamental theorem of
affine geometry for nilpotent of class 2 Lie algebras is proved. © 201/ Bull. Georg. Natl. Acad. Sci.
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1. Introduction

In this paper, for the Lie algebra £ over the ring K we construct the coset lattice CL(L) and investigate the connec-
tions between the structure of 4 and CL(L). These problems were posed by A. G. Kurosh and G. Birkhoff and studied by
the theory of groups developed in M. Kurzio, N. V. Loyko, B. Bruno and in other works (see the monograph [1] and
references in there).

In Section 2 the necessary and sufficient conditions are found for the distributivity, modularity, semimodularity of
CL(L), as well as for the decomposability of CL(L) into a direct product and so on.

In common with the lattice of all subalgebras L(£) having a source in geometric considerations (i.e., when L is a
module over the ring K, L(L) realizes the projective geometry PG(L,K)), the coset lattice CL(L) also has its source in
geometric considerations: when A4 is a torsion-free module over the domain K, the lattice CL(L) realizes the affine
geometry AG(L,K) corresponding to the K-module L.

In the mid 60ies a number of mathematicians concentrated their attention on investigating Lie algebras from the
lattice standpoint [2-10]. A few years later the papers [11-23] appeared (see, also [24]). One of the principal objectives
pursued by these investigations was to answer the question for which classes of Lie algebras the fundamental theorem
of projective geometry is valid, that is to say, in which cases a lattice isomorphism is generated by a semilinear isomor-
phism. Examples show that for many classes this problem is answered negatively, especially when dealing with Lie
algebras defined over fields. Hence in some cases it is advisable to consider a more concentrated lattice, say, the coset
lattice CL(L), than the lattice of subalgebras L(L).

When studying isomorphisms of coset lattices ¢ : CL(L)—>CL(L,), the one-to-one correspondence ¢ : L—>L is
constructed in the natural manner. Therefore among isomorphisms we should distinguish those for which ¢ (0)=0. Such
isomorphisms will be called natural C-isomorphisms. We shall say that the fundamental theorem of affine geometry is
valid for the algebra £ over the ring K if any natural C-isomorphism is a semilinear isomorphism, with respect to the some
ring isomorphism /4 : K — K .

© 2011 Bull. Georg. Natl. Acad. Sci.



22 Alexander Lashkhi

2. Some Restrictions on Coset Lattices
Let £ be a Lie algebra over the ring K. We shall consider a set CL(L) consisting of all cosets of A4 with respect to all

subalgebras and of an empty set &. On CL(L) we can introduce the following partial order: X, c X, & X, < X,.

Proposition 1. CL(L) is a complete lattice; the operations “\J” and “(\” are defined as follows: UUu ;

ael

U, =a, + A,, is the set-theoretic intersection, UU o =0g+ <A
ael

a8y —dp,Q eJ),where,Bis some fixed index from

J, A, is asubalgebra of L.
Proof. Let {U,,a e J} = CL(£).Itisassumed that U, # @.Then 3a € £ suchthat ae U, , a € J . Therefore

U, =a+A, for any a . We shall show that a +(ﬂAaJ is an exact lower bound. Let 5+B be a class such that

aeJ
b+B<a+A, for any BeJ. Then we have b-aecd, and B<A,. Indeed, bea+4,>b=a+c,
ceA, =>b-acA,.

Let de B. We have b+deca+A4, =>b+d=a+c, ce A;=>d=(a-b)+c, de A,. Clearly, Bc;ﬂAa ,

aeJ

b-ae ﬂ A, . Therefore

aelJ

b+ng+(ﬂAaJ=a+(b—a)+ﬂAa =a+()4,+(V.

ael aeJ ael ael)

and thus a+ ﬂ A, is an exact lower bound. If however this intersection is empty, then we shall regard ¢ as an exact

aeJ

lower bound. Let us prove the existence of an exact upper bound. Fix any index S € J. Consider the subalgebra
<Aa,aa —ag,a € J). It is obvious that a, + 4, < a, +<A,,,a,, —a[,> is an upper bound forany yeJ.Letb+Bbea
class such that Vy € J we have a, + 4, <b+B.Since a, —be B and 4, < B, we obtain
a,—a,=(a, —b)-—(aﬂ ~b)e B:><Aa,aa -a,,ae J>:QSB:>
=ag+Q<az;+B=a, +st+(aﬂ —b)+B:>a/3 +Q<b+ B.

Hence a, +Q is an exact upper bound. It is obvious that it does not matter how the index (3 is chosen.
Proposition 2. Let L be a Lie algebra over the ring K. The lattice CL(L) is decomposable into the direct product
ifandonly if K = Z, and L=1.

Proof. Let us consider the lattice isomorphism ¢:CL(£L)—>L =L +L,.
Since D, 4 € CL(L’), in L, L, L, the biggest and the smallest elements exist. Let these be E,0€ L, E,,0, € L,

E,,O, € L,. We assume that

o(b+B)=(E,0,)=E L, ¢(c+C)=(0,E)=E,eL.
It is obvious that for any §=(x1,x2)elj we have X =()_(ﬂg.)U(z\—’ﬂ Ez) . Therefore for any a € 4 we obtain

a=[aN(b+B)]U[aN(c+C)] from which it follows that £=(b+B)U(c+C). Let us show that B = C . There

exists ae £ for which a+B<c+C . Indeed, let us assume the opposite. Then (a+B)N(b+B)=@, i.e.,
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Coset Lattices of Lie Algebras and their Isomorphisms 23

a+b =b+b, > aecb+B forany a € L, Therefore
b+B=A=>B=A4A>13 a,a+B<c+C=>B=<C.

Similarly, C < B andtherefore C = B .. Further we have A =(b+B)U(c+ B). Thisresultsin 0c b+ B or Oc c+B.

If 0e b+ B, then be B.Itis likewise clear that ¢ ¢ B, since otherwise £ =B and £ = BUC . We have to show
that B is maximal in £ . For this it is enough to show that B is a maximal subgroup of the abelian group £ . Assume that
there exists a subgroup G such that B< G < £. Then there is g€ G, g¢ B. On the other hand, £ =BU(c+ B)
implies

gec+B, g=c+u, ueB=>c=g-u,g, ueG, ceqG.

Since B G and ce G ,weobtain BUC =G, i.e., £ G .Therefore G = £ and B is amaximal subgroup and hence
amaximal subalgebrain £ .

Let us now assume that either the lattice L, or L, contains more than two elements. Then there exists ¥, € L, such

that £, 5% 20.In L consider the chain (0, E,) = (¥, E,) = (E,, E,) to which for o~ there corresponds the chain

o (OI,EZ)] =b+Bc o’ l:(Y,,EZ)] =f+Fce’ [(E,,Ez)] =L.
This means that we have strict imbeddings B C F' C £, which is impossible. Therefore L, and L, contain only two

elements each; thus CL(L) contains four elements, which proves that K =Z, and dim £ =1.

Proposition is proved.
Coset lattices of Lie algebras usually have not nice lattice properties. For example, if 4 is a proper subalgebra ofa Lie

algebra £, 0c Ac £ and xe £\ A4, then {@,x,x +4,4,(x, A}} is anonmodular sublattice (pentagon) of CL(L) (see
Fig. 1). .

Thus algebra has no proper subalgebras, i.e. is defined over a field and dim £ = 1. So, modular coset lattice of a Lie
algebra £ has the form (Fig. 2), where only the elements of £ are the atoms in CL(L).

It is clear that CL(L) is distributive if and only if when the lattice in Fig. 2 contains only two atoms, i.e. dim £ =1,

K=2,.

Now let CL(£) be lower ssmimodular and Lie algebra £ is defined over the principal ideal domain K. In this case a
maximal subalgebra X c £ and an element a € X exist. Therefore £ =X U(a +X ) and £ covers X; hence, by the
condition a+.X covers XN(a+X)=. Thus X =0 and so we conclude that K is a field and dim £ = 1. Thus we

have
Theorem 1. Let £ be a Lie algebra over the principal ideal domain K, then

@) CL(K) is distributive ifand only if dim £ =1, K =Z,;
(r.4)

x+ 4

%) @

Fig. 1. Fig. 2.
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24 Alexander Lashkhi

(ii) CL(£L) is modular if and only ifK is a field and dim £ = 1,

(iii) CL(£L) is lower semimodular if and only if it is modular.

3. Complements and Chain Conditions

Now we assume that £ is a Lie algebra is defined over a field F.

Proposition 3. [fK is a field, then CL(L) is the lattice with complements.
Proof. Let a+.X € CL(L) and Y be a maxima! subalgebra in A4 that contains X and the element b ¢ ¥ . Then
£=<b>UY; YN(b+Y)=@.Since X c ¥, we have
XN(b+Y)cYN(b+Y)=B=(a+Y)N[(a+b)+Y]|=2.
On the other hand,
(a+X)N[(a+b)+Y]=a+(X,¥,b=(a+b)-a)=C,
., (a+X)N[(a+b)+Y] is the biggest element in CL(£L) .

Proposition 4. If K is a field, then CL(L' ) is the lattice with relative complements if and only if L (K ) is such.
Proof. The necessity follows from the fact that any closed interval of the lattice with relative complements is the

lattice with relative complements itself and also from the fact that L(£)=[D,£], i.e., L(£) coincides with the interval
[, £] in the lattice CL(L) .

To prove the sufficiency we consider an arbitrary interval [U, V] cL(L),whereU=a+X,V =b+Y .IfU=0,
we have [U,V]=[@,b+Y]=[@,Y]=L(L).

Since L(L’) is the lattice with complements, the interval [U,V] will also be such. Let U = . Then
[UV]=[a+X,b+Y]=[X,Y].

Since L(ﬁ ) is the lattice with relative complements, we find that the intervals [X , Y] and therefore [U s V] are the

lattices with complements.

Thus each interval in the lattice CL(£) is with complements, i.e., CL(£) is the lattice with relative complements.
Proposition 5. If K is a field, then the condition of Jordan-Dedekind is fulfilled in the lattice CL( [) if and only if
it is fulfilled in L(L).

Proof. The necessity follows from the fact that L(£) coincides with the interval [&, £] < CL(£).

To prove the sufficiency we assume that U =a+ X, V =p+V, UDV .
Then there are nonsaturated chains

U=4,2-D A4, D4 =V, ™*

U=B,oB >---2B

m-1

SB,=V. (**)

Furthermore, each element u € £ defines the automorphism # € Aut [CL(L‘ )] as follows:
A:CL(L)>CL(L), p:ix—>x+pu, aU)=U+u.

The automorphism a (a € L’) (*) and (**) into the nonsaturated chains connecting X and Y. Therefore m=n. If
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however V' =, then it can be assumed that 4, =a, B, ,=b. Then U=a+X =b+Y, and applying the

automorphism & =(—a) , we obtain a nonsaturated chain of length »-1 from the chain (*), and a nonsaturated chain of

length m-1 from the chain (**). Both chains connect X and (in our case) & =Y . Therefore m—1=n-1=>n=m.
4. Affine Geometry and Natural C-Isomorphisms

Like the projective geometry PG (X, K ) corresponding to the torsion-free K-module X, where K is a principal ideal
domain, is algebraically interpreted as the lattice L(X) of all K-submodules [25]; the affine geometry AG(X,K)

corresponding to K-module X is the coset lattice CL(.X) .
Let 4 and 4, be linear algebras over the rings K and K|, respectively. The bijection f: 4 — 4, will be called a
semilinear quasi-isomorphism with respect to the isomorphism #: K — K, ifthe equalities
Sax+py)=h(a)f(x)+h(B) S (¥), f(w)=2f(x)/(»).
const=AeK,, A0 arefulfilledforany x,,y,€4, a,fek.
The mapping fis called a semilinear isomorphism for 4 =1 and a semilinear antiisomorphism for 4 =—1.
Example 1. If o is an automorphism of the ring 4, then the mapping transferring the element (O'(x, )) to each

element (,) of the module A4” is a semilinear isomorphism A4, — 4" withrespectto o e Aut(A) ; werecall that A, is

the principal ring 4 considered as the left module over itself.
Example 2. Let now the ring 4 be noncommutative; for any a not belonging to the center of 4 the homothety defined
by the mapping x — ax will not be, generally speaking, the linear mapping of the 4-module £ into itself. However, if g is

invertible, then this homothety is a semilinear isomorphism with respect to the internal automorphism 5 — aba™ of the
ring 4 because a(bx) = (arba‘l )(ax) .

We shall say that the fundamental theorem of projective geometry is valid for the algebra £ over the ring X if a
lattice isomorphism ¢ : L (/J ) - L (4 ) , where £ is the algebra over the ring K, implies the existence of a semilinear
isomorphism g:L — £ with respect to the isomorphism 4: K — K, such that the equality (p(A) = g(A) holds for
any subalgebra A€ L(£).

Since in the lattice CL(.£) only elements £ cover &, the isomorphism /: CL(£) — CL(4;) defines the bijection
L5 4.

If f:CL(£)— CL(4) is an isomorphism, then ¢ defined by the equality @(x)= 1 (x)- £ (0) will be a natural C-

isomorphism. We shall say that the fundamental theorem of affine geometry is valid for the algebra 4 if any natural C-
isomorphism is a semilinear isomorphism.

Remark 1. If ae £ is a fixed element and f(a)=a,, then the mapping ¢(x)= f(a+x)-a, is a natural C-
isomorphism. Indeed, ¢ will be a C-isomorphism defined by the element ~a,, i.e., it will be an automorphism

(-a)e Aut[CL(ﬁ)] ;since ¢(0) = f(a)-a,,f will be a natural C-isomorphism.

Example 3. Not each natural C-isomorphism is a semilinear isomorphism. Any one dimensional space over Z, admits
(p—1)! natural C-automorphisms while the group of internal automorphisms Z/ _has the order p—1. Therefore for p >3 one-
dimensional spaces over Z, admit natural C-automorphisms different from ordinary ones.

Proposition 6. Let f:CL ( L ) - CL(L;) be a natural C-isomorphism. Then the following statements are true:

(1) finduces a lattice isomorphism [ :L(L)—> L(4);

Bull. Georg. Natl. Acad. Sci., vol. 5, no. 1, 2011



26 Alexander Lashkhi

) f((M>) = <f(M)> for any subset M < L ;
(3) if K and K, are principal ideal domains, then f(a+(b)) = f(a)+<f(b)>, abe L ;
@ f(u a):,u,f(a), u, €K, , is fulfilled for any ae £ and pe K ;

(5) ifa and b are linearly independent elements and K and K, are principal ideal domains, then f(a) and f(b)
are also such.

Proof. (1) The lattice Z(£) coincides with the interval [0, £] < CL(£). In the case of a natural C-isomorphism this
lattice is mapped onto the interval [0,4] <= CL(4). .., onto L(£).One should only keep in mind that the unions in

the lattices CL(£) and L(£) coincide.
@ f((M))=7(0UM)= £ (0)Uf(M)=0U 7 (M)=(/(m));

3) (a+(b))U0=(ab)= f(a+{(b))Us(0)=(s(a).f(b)):

aea+<b>:>¢(a)ega(a+<b>):>(p(a+<b>):gp(a)+M,.

Therefore
(/(@)+ M, )U0= (1 (a). M) = /(a+(8))N0= (7 (a). M) = (/(a). £ () = (/ (a). M,).
It is obvious that M, =(b,) is one-dimensional. Thus f (a+(b)) = f(a)+(b) and
b=af(a)+B(b),a.BckK,,ie, f(a+<b>) = f(a)+<alf(a)+ﬁ,f(b)>.
Let o, # 0. We have
fla)=(a)) (af (a)+ BS (b)) e f(a+(b)= (o) Bf(b) ¥ (a+(b))=
= (£(0))Nf(a+ (b)) == (b)N(a+(b))*D ;
(4) We have
(na) = (a)= f(<;1a>)f(<a>) =" <f(,ua)>g <f(a)> = f(ua)=uf(a), pek;
(5)If f(a) and f(b) are linearly dependent, then there exists ¢, € 4 such that (f(a), (b)) =(c,). Therefore
f (<f(a),f(b)>) = f! (<c,>) = <a,b> = <c>, é= f(c),

The classical version of the fundamental theorem of affine geometry can be found in [19]. For the ring generalizations
see [20,27] and references in there. The Theorem 4 from [26] states the following:

Theorem 2 (Fundamental Theorem of Affine Geometry). [/ ¢ : CL( R M) —> CL( x M, ) , (p(O) =0 isalattice iso-

morphism, where M and M, are free modules over the rings R and R, and dim ,M =2, then there exists an

isomorphism o : R — R, such that the restriction ¢ on M is a o -semilinear isomorphism.
Remark 2. The requirement that dim A4 > 1 is essential. Indeed, for the one-dimensional space over the field K the

lattice CL(A) has the form in Fig. 2.

Therefore, any one-to-one correspondence ¢: A — A, where A, is the space over the field K| having the same
cardinality as K, will be an C-isomorphism.

5. The Fundamental Theorem of Affine Geometry for Lie Algebras

Assume now that K is a commutative domain. Lie algebra L over K is called torsion-free if ax =0 (a ck, xe L)
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implies @ =0 or x=0,
Lemma 1. Let dimL>2, f:CL(L)—> CL(4) be a natural C-isomorphism between torsion-free nilpotent Lie
algebras over the rings K and K . Then:

@ f(2(£))=2(r(£)).
(b) the nilpotency classes of £ and £ coincide;
(¢) there exists an isomorphism h: K — K, such that f(;tb) = h(/l)f(b), V bel.

Proof. (a) Let z€Z(£), ac£, (z)N(a)=0. Then dim| £({a)U(z))]=dim[ 7 ((a))Uf((z))]<2, ie.,
7(2(£))=z(£). For the inverse isomorphism ' we have
rza)]sz(e)= 11 (z(8)|=2(4)= £ (2(£)= 1(2(£))=2(£).
(b) The center of a nilpotent algebra is isolated, i.e., we have the torsion-free algebra L/Z(£) . finduces a lattice

isomorphism between L/Z(£) and L, /Z(4). The induction with respect to the nilpotence of the class enables us to

conclude that the statement is true.
(©)Let ac £, zeZ(£), (a)=0. The subalgebras 4=(a)U(z) and 4, =(f(a))U(f(z)) are abelian.
The natural C-isomorphism f : CL(£) — CL(4) is an h-semilinear isomorphism (Theorem 2), i.e., forany ze K ,
f(uz)=h(u) f(2), f(ra)=h(u)f(a).ifhowever b=cz,then
) = £ T (a2)] = ()] = () 1 (2) = () ) 7(2) = M) £ ().

Proposition 7. Let L and L, be nilpotent Lie algebras over the fields F and F,, and f be a natural C-isomorphism.
Then f(a+b)=f(a)+f(b) forany a,beL.
Proof. First assume that F # Z, . Consider the natural C-isomorphism @(x) = f(x=5)+ /(). We have

(p(a+b)=f(a+b—b)+f(b)=f( )+ f(b)=¢[2(a+b)]|=20(a+b)=2f(a)+2f(b)=
:>f[2 (a+b) -b]+ =2f(a)+2f(b)= f(2a+b)= f(2a)+ [ (b) =

=1|2(34) }( o) Jrr®)=rtay+ (o)

Letnow F=Z2,.Then a=-a, f ( ) ( ) Using the Proposition 6, we have

avtess]=siasio)=o[] 2]

I
f(a)Uf(a+b) I
Il

f<a>+<f<b)>:{ 1(a). } { (a). }

Consequently, f(a+b) = f(a)+f(b).

Lemma 2. Under the conditions of Lemma 1 if for any a,be L, [a,b] =c we have [f(a),f(bﬂ =H f(c), then
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u=conste K,.

Proof, Let [a, b ] =¢, [a, bZ] =¢,.Then

[£(a).rB)]=ms (@) [f(a)f(B)]= S (),
[a.6,+b,]=c,+c, :>|:f(a),f(b, +b2)] =uf(e+c)=uf(c)+rf(c)
[f(a),f(b,)+f(b2)]=[f(a),f(b]):|+[f(a),f(b2)]=,u[f(c,)+y2f(cz)3
= (u-m)f(a)=(1,- 1) f(c,)

We introduce the notation &, = g -y, a =g, —p.If @, =0 and @, =0, then g, =, =m . If ¢, =0 and @, # 0,
then f (02) =0. Therefore we may take any element instead of x,,i.e. y, = g, . The situation o, # 0, @, = 0 is treated
similarly. Consider the case @, # 0, a, # 0 . There exists an isomorphism f(,u x) . h(,u)f(x) such that ,,a, e K .

Let #(&)=a, be such that h(@)=e,, h(&,)=a,. We have

ac =a,, a,|ab]=>[aab-a,b]=0=
:>[f(a),alf(bl)—azf(bz)]=O:>
=a[f(a).f(b)]=a]f(a).f(b)]=
= Q’;,u]f(cl)=aleuzf(Cz):> ﬂ]f(alcl)z ,uzf(azcz)a H = H,.

Theorem 3. Let f: CL(,C) - CL(L;) be a natural C-isomorphism between the nilpotent of class 2 Lie algebras

over the fields K and K , then f is a semilinear quasi-isamorphism with respect to the isomorphism h: K — K.
Proof. First we shall prove the theorem for the class of nilpotence 2. On account of the above arguments we can show

that there exists 1 € K such that f ([a,b]) =u [ f (a), f (b)J . Everything is clear if g, b commute. Otherwise we shall

have a natural C-isomorphism of 2-nilpotent algebras

7 :CL({a)U(b)) > CL({1 (a))U(f ()))-
It is clear that
Z({a)u(e) = (me]).  Z({(/()U(/ )=/ ()7 )]
Therefore
rlz(@ue)]==((7@)u(r @)= 7 (@) =2[/ (a). £ ()].
Thus we have shown that the theorem holds for 2-nilpotent Lie algebras.

The given Example 4 shows that the theorem is false for the class of nilpotency 23.
Example 4. Let Lie algebra £ over the field F is generated by the elements a, b and has the defining relations

0#[a,b]=z, [az]=[b,z]=0.
It is clear that dim £=4, £ is nilpotent of class 3 and Z(£) = ([a,b]) . For arbitrary element
I=aa+pb+ylabl+u zeL, ap,y,peF
consider the map f: £ — £

f(l):aa+ﬂb+y([a,b]+ Z)+/IZ.
We have
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af([a,b])+ﬂf([a,b]) = a([a,b]+z)+ﬂ([a,b]+z) = (a +ﬁ)([a,b]+z) = (a+ﬁ)f([a,b]) =
=f[(a +ﬂ)[a,b]} =f(a[a,b]+ﬂ[a,b]).

So for any
L =aa+ Bb+y, [a,b]+,ulz, o,BLv.H eF,
L =a2a+ﬂ2b+y2[a,b]+yzz, oy, By Yyl €F,
we have
f(ll+lz):f(ll)+f(lz), f(al)zaf(l), acF.
Therefore

f(ZIUlz)zf(ll +<ll _lz>)=f(l|)+f(<ll _12>)=f(1|)+<f(11_12)>=
=7 (L)+{r(0)-r (L)) =r (U (L).

Consequently, fis a natural 4-automorphism of the lattice CL(L), which is not a semilinear automorphism of L.

Remark 3. From the Theorem 3 and Example 4 we can conclude that the Theorem 3 from [20] needs corrections, i.e.
it is valid for nilpotency of class <3.

So the fundamental theorem of affine geometry for nilpotent of class >3 Lie algebras over the field is false.

The similar problems for Hall’s W-power groups are considered in [28, 29].
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