ATLAS Experiment Sensitivity to FCNC Top Quark Rare Decay $t \rightarrow Zq$ at $\sqrt{s} = 10$ TeV

Leila Chikovani*, Tamar Djobava**, Maia Mosidze**, Gvantsa Mchedlidze**

* E.Andronikashvili Institute of Physics, Tbilisi
** High Energy Physics Institute, I.Javakhishvili Tbilisi State University

(Presented by Academy Member Anzor Khelashvili)

ABSTRACT. The sensitivity of the ATLAS detector to flavour changing neutral current (FCNC) rare decays of the top quark $t \rightarrow Zq$ (where q represents c and u quarks), in $t\bar{t}$ pair production events at a center-of-mass collision energy of $\sqrt{s} = 10$ TeV was studied within the framework of ATLAS software Athena. The full simulation Monte Carlo samples of the signal and backgrounds have been used for the analysis. The Standard Model backgrounds $t\bar{t}$, $W + jets$, $Z + jets$, WZ, WW, ZZ, $Wb\bar{b}$ and single top have been considered. The results obtained by the cut-based analysis are presented within two different approaches: the FCNC branching ratio sensitivities (assuming a 5σ signal significance for discovery) and 95% confidence level upper limits (in the hypothesis of signal absence) for the integrated luminosities $L=1$ and 10 fb$^{-1}$.

The results demonstrate that in ATLAS experiment a branching ratio $Br(t \rightarrow Zq \rightarrow llq)$ as low as 1.1×10^{-2}, 3.6×10^{-3} could be discovered at energy of $\sqrt{s} = 10$ TeV at the 5σ level for the LHC integrated luminosities of $L=1$ fb$^{-1}$ and 10 fb$^{-1}$, respectively. If no signal evidence is found, the following 95% confidence level upper limits on the branching ratio are expected: 3.11×10^{-3}, 2.57×10^{-4} for the integrated luminosities of $L=1$ and 10 fb$^{-1}$, respectively. © 2011 Bull. Georg. Natl. Acad. Sci.

Key words: LHC, ATLAS, FCNC, top quark.

The paper reviews the study of the ATLAS experiment [1] sensitivity to the flavor changing neutral current (FCNC) top quark rare decays, $t \rightarrow qZ$ (where q represents c and u quarks), in $t\bar{t}$ events produced at the LHC at CERN.

The LHC will be a top quark factory, producing millions of $t\bar{t}$ pairs in a sample of 10 fb$^{-1}$, which is expected to be collected during the first years of LHC operation, making the LHC an ideal place to explore rare decays of top quark. The reason for the interest in top quark rare decays via FCNC is at least twofold. First, these decays are strongly suppressed in the Standard Model (SM) at tree level due to the Glashow-Iliopoulos-Maiani (GIM) mechanism [2]. Although absent at tree level, small FCNC contributions are expected at one-loop level, determined by the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [3-6] and the typical branching ratios for the rare top quark FCNC decays predicted within the SM are so small ($Br(t \rightarrow Zc) \sim 1.3 \times 10^{-17}$, $Br(t \rightarrow Zu) \sim 1.3 \times 10^{-14}$) [7,8], that the observation of several events of this decay would provide a clear signal of new physics beyond the SM, like supersymmetry (SUSY) [9], multi-Higgs doublets [10] and
models with exotic (vector-like) quarks [11-13], which have predicted the presence of FCNC contributions already at tree level and significantly enhanced the FCNC decay branching ratios (up \(\sim 10^4\), \(10^5\)) compared to the SM predictions. Second, due to its large mass (\(m_t = 175\) GeV) top quark could play a momentous role in the search for Higgs physics beyond the SM.

FCNC \(t \rightarrow Zq\) decays have been studied at colliders and the following experimentally observed upper limits on the branching ratios at 95% confidence level (C.L.) from the direct searches have been derived: 7.8%, 49% and 3.7% for LEP [14-17], HERA [18] and Tevatron [19] experiments, respectively.

The analysis presented here focuses on the following final state topology of \(\tilde{t}\tilde{t} \rightarrow ZqWb \rightarrow \ell^+\ell^- j, l^+vb, (\ell = e, \mu, q = c, u)\) events.

Event samples

The signal event samples \(\tilde{t}\tilde{t} \rightarrow ZqWb \rightarrow \ell^+\ell^- j, l^+vb, (\ell = e, \mu, q = c, u)\) and backgrounds events (\(\tilde{t}\tilde{t}\), \(W+jets, Wb\bar{b}, Z+jets\), diboson (\(WW, WZ, ZZ\)), single top quark production) have been produced within the framework of the different versions of ATLAS software Athena 14, 15 at energy of \(\sqrt{s} = 10\) and obtained by full simulation steps (generation, simulation, digitalization, reconstruction, Analysis Object Data (AOD) creation).

For the generation of signal events the TopReX [20] package has been used. The hadronisation was handled by PYTHIA [21]. Background events coming from \(W+n\) partons and \(Wb\bar{b}+n\) partons were generated with AlpGen 2.06 [22] interfaced with HERWIG 6.510 [23].

Generation of SM \(\tilde{t}\tilde{t}\) events (fully hadronic and fully leptonic) was done using the NLO generator MC@NLO 3.1 [24]. Partons were fragmented and hadronized using HERWIG linked with the multiple parton scattering generator JIMMY [25,26]. The AcerMC generator [27] was also used to generate semi-leptonic \(\tilde{t}\tilde{t}\). The AcerMC was interfaced with Pythia. The \(Z+jets\) events were generated using the AlpGen library interface with HERWIG and JIMMY generators. Only the \(Z \rightarrow \ell^+\ell^-\) (electrons and muons with \(p_T > 10\) GeV and taus with \(p_T > 5\) GeV) decays were considered.

The generation of the \(\tilde{t}\tilde{t}\) events was done using the MC@NLO 3.2 [28] package. The hadronisation was handled by PYTHIA, TAUOLA and PHOTOS [28] were used to process \(\tau\) decays and radiative corrections. A top quark mass of 172.5 GeV was assumed for all processes.

The CTEQ 6L PDF [29] was used for all events, except those generated with MC@NLO, where CTEQ 6M was used. Initial and final state QED and QCD radiation, and multiple interactions were simulated in agreement with Tevatron data extrapolated to LHC. No pile-up events were added. Only the samples of \(\tilde{t}\tilde{t}\) (with at least one lepton) and single top events generated by AcerMC were produced with pile-up.

A detailed GEANT4 simulation of the detector was used.

Event Analysis

We have studied the rare top quark decays via FCNC \(t \rightarrow Zq\) using simulated LHC data of 40 000 \(\tilde{t}\tilde{t}\) events, where one of the top quarks is assumed to decay through its dominant SM decay mode (\(t \rightarrow Wb\)), while the other top quark decays via the FCNC mode \(t \rightarrow Zq\). Due to the large QCD background, it is very difficult to search for FCNC signal using a mode where W decays hadronically. Due to this reason, only leptonic decay of W was taken into account.

Thus the experimental signature of \(\tilde{t}\tilde{t} \rightarrow ZqWb \rightarrow \ell^+\ell^- j, l^+vb, (\ell = e, \mu)\) events is three isolated leptons (electrons or muons) separated by \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.4\) from other objects, missing transverse energy \(E_T\) (comes from the neutrino), one jet tagged as b-jet and one jet tagged as light jet.

The following topologies of the SM background processes were considered: \(\tilde{t}\tilde{t} \rightarrow W+b\bar{b}+n\), where one of the \(W\) bosons has mass of 172.5 GeV was assumed for all processes.

The cut-based analysis has been carried out in order to estimate the branching ratio (BR) sensitivity for \(t \rightarrow Zq\) decay. A set of the following selection cuts have been applied in sequence for the signal and backgrounds:

- The preselection cut required the presence of 3 isolated leptons (electrons or muons), one light jet (from u, or c quarks) and one b-tagged jet (from b quark). The
requirement of three leptons reduces significantly the Z+jets, W+jets, WbWb, WcWc and tt̄ backgrounds, while the requirement of two jets reduces significantly diboson (WZ, ZZ, WW) backgrounds.

- For leptons $p_T > 30 \text{ GeV/c}$ has been required.
- The next requirement, namely that the missing transverse momentum in the event satisfies $p_T^\text{miss} > 30 \text{ GeV/c}$, is effective at further reducing the Z+jets background while having little impact on the signal and other background sources.
- Next, it was demanded that there must be at least two jets with $p_T > 40 \text{ GeV/c}$, $|\eta| < 2.5$, and satisfying the following isolation conditions: $\Delta R_{jj} > 0.4$ (jet-jet) isolation.
- The presence of a reconstructed $Z \rightarrow l^+l^-$ decay is a powerful cut against the tt̄ background. An opposite sign and same-flavour pair of isolated leptons were required to reconstruct the Z mass within $m_Z \pm 6 \text{ GeV/c}^2$.
- A peak at the top quark mass in the $Z\ell\bar{\ell}$ invariant mass distribution was sought. In Fig the distribution of reconstructed invariant mass m_{ll} for the best combinations of llj is presented for full simulation samples. The top quark mass resolution is $\sigma(m_{ll}) = 11 \text{ GeV/c}^2$ for full simulation samples. Accepted combinations were required to lie within $\pm 24 \text{ GeV/c}^2 (\sim 2 \sigma)$ around the known top quark mass fast simulation samples.
- The leptonic top quark decay was reconstructed as part of the signal requirement. First the W invariant mass was reconstructed. Then the requirement was made to have one jet tagged as b-jet. Finally $\ell b\bar{b}_\text{jet}$ invariant mass was required to lie within $24 \text{ GeV/c}^2 (\sim 1 \sigma)$ around m_t. The top mass resolution is $\sigma(m_{\ell b}) = 24 \text{ GeV/c}^2$.

The top quark with Standard Model semileptonic decay ($t \rightarrow l\nu b$) cannot be directly reconstructed due to the presence of an undetected neutrino in the final state. Nevertheless, the neutrino four-momentum can be estimated by assuming the missing transverse energy to be the neutrino transverse momentum. The longitudinal component (p_z) can be determined, with a quadratic ambiguity, by constraining the W mass (calculated as the invariant mass of the neutrino and the most energetic remaining lepton) to its known central value $m_W = 80.4 \text{ GeV}$.

The following χ^2 expression has been estimated for each event with requirement of its minimization:

$$
\chi^2 = \frac{(m_{ll}-m_{ll})^2}{\sigma_{ll}^2} + \frac{(m_{ll}-m_{ll})^2}{\sigma_{l l}^2} + \frac{(m_{ll}-m_{ll})^2}{\sigma_{l l}^2} + \frac{(m_{ll}-m_{ll})^2}{\sigma_{l l}^2}
$$

where $m_{ll}, m_{ll}, m_{ll}, m_{ll}$ are the reconstructed mass of the top quark decaying via FCNC, the top quark mass decaying through Standard Model, the W boson mass from the top quark Standard Model decay and the Z boson mass from the top quark FCNC decay, respectively. The following values are used for the constraints: $m_W = 80.42 \text{ GeV}$, $m_Z = 91.19 \text{ GeV}$, $\sigma_l = 14 \text{ GeV}$, $\sigma_W = 10 \text{ GeV}$, $\sigma_Z = 3 \text{ GeV}$, $m_t = 172.5 \text{ GeV}$.

The final signal efficiency is 6.73% after applying the above-mentioned cuts in sequence for the signal and backgrounds. The most dangerous background is tt̄ process.

Assuming a signal discovery with a 5σ significance, the branching ratio (BR) sensitivities to FCNC decay of t→Zq for integrated luminosities $L=1$ and 10 fb⁻¹ have been estimated. In this estimation the SM cross-section for tt̄ production in pp collisions at $\sqrt{s} = 10 \text{ TeV}$ for $m_{\text{op}} = 172.5 \text{ GeV/c}^2$, $\sigma(SM) = 401.60 \text{ pb}$ (the NLO+NLL calculation) and the charged lepton identification efficiency $\varepsilon_l = 0.9$ have been considered. The expected branching ratio sensitivities for a 5σ discovery for different luminosities are shown in Table.

In the hypothesis of a FCNC top quark decay signal absence, the expected upper limits at 95% confidence level have been estimated. The results are presented in Table. One can see, that Br (t→Zq→llq) as low as 1.1 x 10⁻³, 3.6 x 10⁻⁴ could be discovered at energy of $\sqrt{s} = 10 \text{ TeV}$ in the center mass system at the 5σ level, assuming $m_{\text{op}} = 172.5 \text{ GeV/c}^2$, for the integrated luminosities of $L=1$ and 10 fb⁻¹, respectively. If no signal evidence is found, the following 95% confidence level limits on the branching ratio are
ATLAS Experiment Sensitivity to FCNC Top Quark Rare Decay $t \rightarrow Zq$ at $\sqrt{s} = 10$ TeV

The expected branching ratio sensitivities to the FCNC top quark rare decay for a 5σ discovery and the expected 95% CL limits on the FCNC top quark decay branching ratio, in the hypothesis of signal absence.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Energy (cms)</th>
<th>BR(L=1 fb$^{-1}$)</th>
<th>BR(L=10 fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \rightarrow Zq \rightarrow llq$</td>
<td>$\sqrt{s} =10$ (TeV)</td>
<td>1.1×10^{-2}</td>
<td>3.6×10^{-3}</td>
</tr>
<tr>
<td>$95%$ C.L. limits for BR</td>
<td>$\sqrt{s} =10$ (TeV)</td>
<td>3.11×10^{-3}</td>
<td>2.57×10^{-4}</td>
</tr>
</tbody>
</table>

expected: 3.11×10^{-3}, 2.57×10^{-4} for the integrated luminosities of $L=1$ and $10 \, \text{fb}^{-1}$, respectively.

Conclusion

The sensitivity of the ATLAS experiment to the FCNC rare decays of the top quark in the tt pair production events $t\bar{t} \rightarrow ZqWb \rightarrow l^+l^- j j' \nu\nu (l = e, \mu, q = c, u)$ at a center-of-mass collision energy of $\sqrt{s} = 10$ TeV was estimated using the full simulation Monte Carlo samples of the signal and backgrounds. The cut-based analysis was used to obtain the FCNC branching ratio sensitivities (assuming a 5σ signal significance for discovery) for the integrated luminosities $L=1$ and $10 \, \text{fb}^{-1}$. The results demonstrate that, a branching ratio $Br (t \rightarrow Zq \rightarrow llq)$ as low as 1.1×10^{-2}, 3.6×10^{-3}, could be discovered at a center of mass system energy of $\sqrt{s} = 10$ TeV at the 5σ level, assuming $m_{\text{top}} = 172.5 \, \text{GeV}/c^2$, for the integrated luminosities of $L=1$, and $10 \, \text{fb}^{-1}$, respectively. If no signal evidence is found, the following 95% confidence level upper limits on the branching are expected: 3.11×10^{-3}, 2.57×10^{-4} for the integrated luminosities of $L=1$ and $10 \, \text{fb}^{-1}$, respectively.

Acknowledgements. We are thankful to Prof. A. Onofre, Dr. F. Veloso, Prof. J. Carvalho, Dr. N. Castro, Prof. V. Kartvelishvili, and Dr. G. Khoriauli for the very interesting and useful discussions. This work was supported partly by GNSF grant G-185 and ISTC grant G-1458.
REFERENCES

Received September, 2010