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ABSTRACT. LaH,, —type ordering hydrides are considered. Conditions which determine the values of critical
concentrations associated with the phase transition type change and anomalously large heat capacity discontinuities

are analyzed. © 201/ Bull. Georg. Natl. Acad. Sci.
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The ordering superstoichiometric rare-earth dihydri-
des were widely investigated experimentally and theoreti-
cally (main experimental results were summarized in [1],
for theoretical considerations see e.g. [2-9]). Numerical
calculations [3-5] performed for the b-phases of CeH,,
and LaH,, (0<c<0.8) showed that in these compounds
the ordering subsystem of hydrogen atoms located in
octahedral interstitial sites (H -atoms) reveal a two-step
ordering process containing the disorder-order and or-
der-order transition points. As established [3, 5], in the
cerium dihydrides CeH,, the disorder-order phase tran-
sition is continuous (similar to the second-order phase
transitions) within the range [0.35 < ¢ £0.65], and discon-
tinuous (similar to the first-order phase transitions) out-
side of this region. In contrast, in the case of dihydride
LaH,, within the concentration range [0 <c¢ <0.5] disor-
der-order transformation is continuous except the case of
very low values of ¢ (¢ <0.1), while order-order transition
is discontinuous at concentrations ¢ < 0.25 and becomes
continuous at higher concentrations [4, 5]. Precise nu-
merical calculations [8, 9] have shown that in both cases
at the phase transition order change concentration phase
transformations are accompanied by anomalously large
heat capacity discontinuities. In order to understand the

reasons of similarities and differences between these two
rare-earth dihydrides (LaH,, and CeH,, ) we have to re-
call briefly some basic relations characterizing the ther-
modynamics of the hydrogen subsystem in these
hydrides.

General relations. In a number of rare-earth
dihydrides RH,, N metal atoms form a fcc lattice which
contains N octahedral interstitial positions forming a fcc
lattice as well. The spatially ordered distribution of N(H,)
hydrogen atoms (H-atoms) on the set of N octahedral
interstitial positions is described by a single distribution
function n(x, y, z) [2]:

n(x,y,z) = c+ i yexpli 2nx] + 21,y cos[n (x+2y)], (1)

where n(x,),z) is a probability that the octa-interstitial po-
sition with coordinates x,y,z is occupied by a H -atom, ¢
is the concentration of H -atoms defined as ¢ = [N(H,))/
N1, 1, and 7, are order parameters, and yis a normalizing
constant (in our case y=0.25).

Function (1) on the set of octa-positions obtains three
different values: n(x,y,z) = n, n,and n,, where

n=c+ny+2ny, n=c+ny-2ny,
n,=c-ny. @
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It should be stressed that rigorous physical restric-
tions are imposed on the “sites occupation numbers” 7.,
n, and n,. Particularly,

0<n,n,, n,<1. 3)

Both order parameters, 77, and 77,, are restricted by the
relations (2) and (3).

The free energy of the ordering hydrogen subsystem
described by the distribution function (1) can be written
as[2-5]

F(npnz):E(npnz) - TS(UIJL), (43)
E(n,,n,) =Nk,0.5[V,c+V (yny+2V,(m,)] (4b)

S(nm,) =-Nk,Z,_ , vinInn + (1-n)In(1-n)]. (4c)

Here V,, V| and V,are energy parameters (taken in tem-
perature units). Their values can be estimated from ex-
perimental data; n,(i = 1, 2, 3) are determined by expres-
sions (2), while v, (i= 1, 2, 3) are parts of N interstitial sites
where the location probabilities of H -atoms n(x, y, z) equal
n,n, and n,, respectively. In conditions of distribution
function (1), v,=v, =0.25and v, =0.5. As (v, + v, + v,)
=1, wehave: (vin, +v,n, +vin)=c.

The values of order parameters associated with the
extrema of the free-energy function F(n,,7,) are defined
by a pair of conditions: [0F/07,] =0, [0F/0n,] =0, which
for the given function (4) look like

In[n n,(1-n)/ (1-n) (1-n) n21=-V,n,/T (5a)

In[n(l-n)/(1-n)nJ=-V,n,/T. (5b)
The type of extremal points (solutions of egs. (5)) is
determined by the sign of second derivatives of the free

energy function (4) and the sign of determinant formed
with these derivatives:

OF/on}? = Nk,y{V, + T y{[n,(1-n)]"+

+[n,(1-n)['+2[n(1-n,)]'}}, (6a)
GF/on? = 2Nk, P {V, +
+T2p{[n,(1-n)]" ++ [n,(1-n)] "} }, (6b)

0°F/on,0m, = 2Nk, ¥ {Ty{[n,(1-n)]" - [n,(1-n,)]"}}. (6c)

A(n,, m,) = (&°Flon ) (°F/on,?) - (@F/on,om,)*. (1)

If A > 0 and (0*F/0n,*) > 0, then the extremum is a
minimum. IfA>0and (0°F70n*) <0, then itis a maximum,
and if A <0, then it is a saddle point.

The scenario of the ordering processes in the sys-
tems characterized by a pair of long-range-order param-
eters, 17, and 7,, depends on the concentration of the
ordering particles ¢, and on the ratio of energy parameters
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V and V,, defined as
p=V,/V,. ®)

Basing on the analysis of experimental data it was
established [5] that

p(CeH, )=125>1, p(LaH, )=0.7743<1. (9)

All the above mentioned mathematical relations are
equally applicable to both compounds: LaH,, and CeH,, .
Within the frames of the developed model the difference
between these two systems is provided exclusively by
the qualitatively different values of the “main energy pa-
rameter” p.

Formulation of the problem. Previous investigations
performed for LaH,, and CeH,, compounds [6-9] had
shown that in both cases there exist two critical concen-
trations, ¢, < 0.5 and ¢® > 0.5, at which the type of
phase transitions is altered. As mentioned above, phase
transformations (order-order, or disorder-order, respec-
tively) are continuous at concentrations ¢,V < ¢ < ¢,
and become discontinuous outside of this region.

In [8] it was shown that in metal-hydrogen com-
pounds of CeH,,  type (where p > 1) critical concentra-
tions ¢, and ¢ ¥ can be determined analytically. In par-
ticular, it was established that

¢, "(p)=0.5 {1-[(p-1)3]"},
¢,O(p)=0.5 {1+[(p-1)/3]"}. (10)

In the present article we attempt to formulate some
mathematical conditions for determination of critical con-
centrations ¢ (p) in metal-hydrogen compounds of LaH,,
type, i.e. in compounds with the main energy parameter
p<l.

Mathematical consideration. In hydrides with p <1
the ordering process begins with continuous formation
of equilibrium states of the type (17, # 0, n, = 0) [4]. In this
case the pair of equations (5) reduces to one equation

2In[n,(1-n)/ (1-n)(A-n)n]=-V ,n /T, (5a)

here n, is determined by (2) and
n,2=c+yn,. )
From (5a) it follows that on the 7 -axis each point

(n,, 0) is an extremum at the corresponding temperature
T(n,), nominated as “extremal temperature” and defined as

I(n)=-Vn/2In[n,(-n)/(1-n)n]. (1)

To determine the type of extremal points on 7,-axis
we have to modify respectively expressions (6)-(7):

[0 ZF/(%],Z],ﬂ:0 = Nk, y*{V,+0.5 T(n,)
x([n(1-n)]" + [n,(1-n)] ")} (12a)
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[02FI0n,,_, = 2Nk,y* (¥, + T(n)) [n(1-n,)] '} (12b)

(the cross-derivative [0°F/0n,0m,],,_, is zero).

At lowest 7, -values both derivatives (12) are posi-
tive and the extremum (77,, 0) isa minimum [4]. At tempera-
ture lowering and increasing of the equilibrium values of
parameter 77, one of the derivatives becomes negative,
while the second one remains positive. As a result, the
extremum on the 77 -axis transforms into a saddle point,
denoting an appearance of the order-order transforma-
tion (7,, 0) = (7, n,) [4]. Numerical calculations [9] have
shown that this transformation may be continuous, or
discontinuous. We intend to analyze the specific interre-
lations between the values of the main energy parameter
p and concentration c, as it is this pair of parameters that
defines the type of (17,, 0) — (7,, 17,) phase transition.

Conditions for phase transition type change. Let us
first consider the disorder-order transformation in the
system with p < 1 at temperature 7= T _, which is deter-
mined by the equality [4]

T =-Vc(l-c) (15)

trl
The corresponding extremum (77, =0, 17,= 0) is a mini-
mum. At lowering temperatures it moves towards its limit-
ing value (boundary point) 77,(max) defined by one of con-
ditions (3) (namely by the requirement n, > 0). The latter
gives

n,(max) =c/y. (16)

The interval 0 < 17, < n7,(max) contains a point 77, (d),
at which the high-temperature minimum transforms into a
saddle point. This point is determined by the condition

A(1,(d),0)=0 (17)

and is reached at the temperature 7' = 7(7,(d)).

As shown by direct numerical calculations [9], if the
order-order transformation is continuous, then T =
T(n,(d)), and when it is discontinuous, then 7' , is in the
vicinity of T(#,(d)) and, whichis significant, 7 > T(#,(d)).

Condition (17) is realized at rising n,-values due to
the sign-change of the bracket in the expression (125).
Thus, one of the rigorous requirements for the occur-
rence of the order-order phase transition in the vicinity of

the point (17,(d); 1,(d) = 0) at temperature T~ T(h (d)) is
V, + T(n(d)) [n(d) (1- n(d))] ' = 0. (13)

The type of this phase transformation depends on
the temperature 7(7, (i), n,) which is associated with the
nonzero solution ofegs. (5) (17,#0, 1,#0). If T(7,(d), n,) >
T(n,(d)) then we suspect that the order-order transforma-
tion had occurred at the point 7,(7 ) < 1,(d), at some
higher temperature 7(n,(T,,)) > 7(1,(d)). In this case we
have to compare at equal temperatures the free energy
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values of two extremal points: one, on the n,-axis, and
second, outside of it. In these conditions the order-order
transition will be discontinuous, of the first order type, as
we have a range of temperatures at which both minima, on
the 17,-axis and outside of it, coexist. The order-order trans-
formation will become continuous when 7(7,(d), 1,) =
T(n,(d)). The following relation can be used as an indica-
tor of realization of this condition:

[0°F(n,(d), n,~ 0)/0n,”] <0. (19)

Thus, we obtain a second condition that determines
the order-order transition type. We have to estimate the
limiting value of expression (6b) at 17, — 77,(d) and 17, =0,
and to determine the sign of the obtained expression. As
a result we arrive at therelation (18). Thus, ifat the value
n,= 1,(d) equation (18) is satisfied, then both above-men-
tioned conditions for the continuous order-order transi-
tion, (17) and (19), are satisfied as well.

By taking into account expressions (8) and (11) we
can rewrite relation (18) as

Ve + [T, @) V ]n(d)(1-nd)] '} =0. (18’)

As n(d) = (¢ +y n,(d)), and the values of 1,(d) are
restricted by condition A(77,(d); 0) =0 (and vary for different
concentrations), it becomes obvious that expression (18°),
finally, contains a single variable — concentration c. Thus
(18) can be considered as an equation which determines in
the ordering systems with a given main energy parameter p
the critical values of concentrations ¢ (p) at which the order-
order transformation changes its type: within the concentra-
tion range 0 < ¢ <0.5 this transition is discontinuous for ¢ <
¢,(p), and becomes continuous for ¢ > ¢ (p).

Approximate solution of equation (18”). The Figure
presents 7(n,) dependences calculated using expression
(11) for compounds LaH,, (p=0.7743;¢=0.05,0.10,0.15,
0.20, 0.25 and 0.30). The specific points at which A(7,, 0)
changes its sign are denoted by triangles. These numeri-
cal results indicate that differences between temperatures
T(A=0)and T _ = T(n, = 0) are about 10%. This detail
allows us (in order to approximate estimation of ¢ (p) de-
pendence) to replace 7(n,(d)) by T, , in (18”). Then, using
expression (15), we obtain the equation:

p-le -]/ [n(d) (1-n(d)]=0. (18")

The next crude approximation consists in the replace-
ment of n(d) =n(n,(d)) by its limiting value n (17 (max)),
where 77,(max) is determined by (16) which yields
n,(n,(max)) = 2c. It follows that

n(d)[1-n(d)]=2c(1-2c).

Within the frames of this additional crude approxima-
tion equation (18") will take the following simple form:



Determination of Phase Transition Order Change Points in LaH,, -Type Ordering Dihydrides 45

LaHy..

Fig. Temperatures T(7,) associated with the partially ordered
states (17,# 0, n, = 0) located on 7,-axis. Triangles denote the
specific T(n,)-values associated with the points (77,(d),0) at
which A(7,(d),0) = 0 and the free-energy extremum (7,,0)
changes its type.

2p-[(1-¢)/ (1-2¢)]=0. (19)
On solving it with respect to ¢, we obtain
c(P)=@2p-1)/(4p-1). (20)

As p(LaH,, )~0.75, for the critical concentration ¢ (p)
the latter expression gives

¢ (p)[LaH,, 1=0.25 Qla)

that is in good agreement with our results of precise nu-
merical calculations [9].

go?ind.)

Brief conclusions. In spite of the above-mentioned
coincidence of data provided by expression (20) with the
results of direct numerical calculations [9], this oversim-
plified dependence has to be treated very carefully. Par-
ticularly, from (20) it follows that c (p=0.5)= 0, ¢ (p<0.5)
<0, and, finally, for p=0.25 wehave ¢ (p =0.25) = 0.

On the other hand, for p =1.25 expression (20) gives

¢,(p)=0375 Q1)

that is in good agreement with the results of direct nu-
merical calculations [8] which are performed for CeH,,
compounds (in condition that p(CeH,, ) = 1.25) and es-
tablish the existence of a tricritical point (the phase transi-
tion type change point) at concentration ¢ ~ 0.36.

It means that in the physically meaningful range of
energy parameter p expression (20) represents the ¢ (p)
dependence qualitatively well, and that it can be used for
qualitative estimations of specific concentrations ¢, char-
acterized by anomalously large heat capacity disconti-
nuities at the phase transition points. For more precise
determination of ¢ (p) values the system of equations (11)
and (18”) has to be solved numerically.
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