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ABSTRACT. We state the following maximum inequality on rearrangement of summands. Let x,, ... ,x,,
Z:’ x, =0 be a collection of elements of a normed space X. Then for any collection of signs 3=(9,,...,,) and any

t>0
k k t
card {7:max,;,, | Z] Xoqy I > 23 < € card {m:max ., || z] Xy | >E},

where weIl,, II, isthe group of all permutations of {1, ..., n} and C> 0 is an absolute constant. The inequality

is unimprovable (the inverse inequality also holds for some other constant) and generalizes well-known results due
to Garsia, Maurey and Pisier, Kashin and Saakyan, Chobanyan and Salehi, and Levental. © 201/ Bull. Georg. Natl.
Acad. Sci.
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1. Introduction

The main purposes of this paper is to study the distribution of the random variable
| Xz |, =max gl X7y +..F X | where x =(x;,..,x,) € X, X is anormed space that is defined on I1,,, the set of

all permutations of {1, ..., n} with the uniform probability on it. There are a series of problems and results in analysis
where this sort of rearrangement maximum inequalities are used, see e.g. the following sources and the literature therein:
The Levy-Steinitz theorem on the sum range of a conditionally convergent series (M.I.Kadets and V.M.Kadets [1]),
Nikishin type theorems on a.s. convergence of rearranged functional series (Levental et al. [2]), orthogonal series
(Kashin and Saakyan [3]), Kolmogorov conjecture on systems of convergence (Bourgain [4]), the Ulyanov problem on
the uniform convergence of a rearrangement of the trigonometric Fourier series of a periodic continuous function
(Konyagin [5] and Sz.Gy.Revesz [6]) and the applications of compact vector summation in scheduling theory (Sevastyanov
(7D

The first result in this direction was found by M.Kadets [8] who was solving the Steinitz problem for the Lp-spaces.
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Garsia in [9] and [10] proved that in the 1-dimensional case (X = R‘) for any x =(x;,..,x,) € X" with Z:xl- =0,

n 2\p/2
E lx, |7 < CQ 1% P2,

where E_ is the average (expectation), p =1 and C > 0 is a constant dependent on p only. This inequality led to the

well-known Garsia theorem on a.s. convergent rearrangement of an orthogonal series.
Maurey and Pisier [11] were first to show the relationship between the permutations and signs. They proved that

in the general case of a normed space X for any x =(x;,..,x,) € X with Z:xl- =0, and for any p =1

Eplx 7 ~E 1) xn 17, M
where #,...,r, are Rademacher random variables. The relation of equivalence in (1) means that the ratios are bounded
by positive constants. It is amazing that for a long time (until the early 90s), the result of Maurey and Pisier remained
unknown. Meanwhile Kashin and Saakyan [3] have proved the following result for X =R' in terms of distributions:
there exists a universal constant C>0 such that for any #~0 and anyreals x,,..,x, with Z:xl. =0 the right-hand-side

fragment of the following inequality holds

PoAw:| D xin @)l > 20} < By {mi x|, > 1} < CR x| ) xr (@) > é b @

However, the method used in [3] does not work in the case of vectors. Then Chobanyan [12] and Chobanyan and Salehi
[13] used a different method based on Lemma 1 below to prove the two-sided inequality (2) for a general normed space

X. In Levental [14] for the case x; =+1 and in Levental [15] for the case of x; R', i=1,...,n theinequality (2) was

given the following form. There are universal constants C and C, such that for any reals x,,..,x, with z]nxl- =0, any

collection of signs with 9=(9,,...,9,) and any t>0 the following inequality holds:

t t
C]P”{ﬂ'l|x”19|n>g}gPﬂ{ﬂ'l|x”19|n>t}SCZP”{HZ|)C”19|”>C—}, (3)
1 2

where
| X3, = maxX g, | X))+t Xp0 % |-
Inequality (3) can be regarded as a refinement of (2) for a general normed space X. As a corollary we single out the

following curious result: There exist universal constants C and C, such that for any finite collection x=( x,,..,x, Jof

elements of a normed space X with z]nxl- =0, any collection of signs 9=(9,...,9,) and any t>0 the following

inequality holds for the distribution of the Rademacher sum:
t n t
CiPim: |5l > o3 < Plox] D x| 21} < CoPim|x,9,> o

Let us note that inequality (3) (as well as the majority of inequalities of this paper) can be expressed in terms of
exchangeable random variables: There are universal constants C, and C, such that for any finite exchangeable system

E=(&,..,¢,) of random variables with Zlngl =0, any collection of signs 3=(9,,...,9,) and any >0 the following

inequality holds:
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C P | E() 9], > Ci 1< Plot|E(@)],> 1} < OGPl | E) 9], > CL ;. 3)
1 2

In Section 2 we give a lemma (Lemma 1) first proved in [12,13,14] which simplifies drastically the proofs of moment
maximum inequalities for convex increasing functions (Section 3). In Section 4 we state the main theorem on two-sided
inequalities for the tail probabilities that lead via the integration by parts formula to moment inequalities for arbitrary
increasing continuous functions.

2. Preliminaries

X stands for a normed space real or complex denotes a normed space, real or complex with the norm || ||, IT, for
the group of all permutations =:{l,...,n} =>{l,...,n} and ©, for all collections of signs 9 =(9,...,9,), §, ==%1,
i=1..,n

Given x = (x,...,x,)e X", mell, and $=(9,...,9,) € ®, we denote

[x3], =max, g, | X3 +...+x, 9, || .
In particular, |x|, = maxX,., || X +...+x; ] .
Let =z elIl, beapermutation with 7 = (k,....k,) andlet 9 =(9,...,9,) € ®, with
‘9141 =+1, ...,19% =+1; u; <u, <.<ug;

8, =-1 ...8, =1 vy <v, <.<y,; s+i=n.
Below we use the permutation 7 (7,9) defined as follows: T =(Uy U seeislgyeees Vi Vi 5eees V] ).
By 7, €I, we denote an optimal permutation , i.e. a permutation such that [x . |, <|x |, forany 7 €II,.
Below we use repeatedly the following lemma (see [12,13,14]).

Lemma 1. (i) If (x,,...,x,) € X" with Zln x;=0 and 9=(9,...9,) € ©,, then

|x7z| + |xzz'9|n 2 2|X”*| 2 |xzz'9|n'

(ii) Forany 9 =(9,...,9,)€ 0,
| X0, | <1z, 9]
3. The moment maximum inequalities for exchangeable random variables

A finite collection £=(&,,...,&,) of X-valued random variables is called exchangeable, if for each 7 Il the

rearranged collection &=(&;(1)»-»Sz(n)) has the same distributionin X" as (&,...,.£,).

n
Theorem 1. Let & =(&),...,¢,) be an exchangeable system of X-valued random variables with 251. =0, and let
1

®:[0,00)—> [0,0) be an increasing convex function. Then :

(@) For any collection 9 =(9,,...,9,) € ©,, the following two-sided inequality holds:

EG)(%ISS )< ED(E]) < ED(EY],).

.. 1 < <
(i) EE, (1| D & ) < E®E],) < 2BE,(1 D &7 1)
1 1
where 1,,...,1, are Rademacher random variables.
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Proof. Since @ isincreasing and convex, using Lemma 1 we get
©(&91, 2 OR21¢ 1, ~ 161, )2 2 @& |,) - @S,

Taking the expectation of both sides and using the fact that & is an exchangeable system, we come to the right-
hand fragment of (i). The left-hand fragment of (i) also follows from Lemma 1:

EOC|E81,) < EOG(E° ], +167 1) < BO(E, ),

where & =(&,, &, ) & =, o d,))s Uy <...<uy areindices for which 9(u;) = +1,...,9(u,) = +1; v, <...<v, are

indices for which 3(u;) =-1,...,3(u,) = —1 Part (i) follows from (i) by integrating with respect to the Rademacher

random variables and using the Levy inequality.

Remark. The fact that for exchangeable X-valued random variables &, ,...,&, with eri =0

k
Emaxig, || ) & 117
< A <
EE, || &nc "

Cc

where 1< p<oo, c,>0, C,>0 are constants, was found by Maurey and Pisier [11], using combinatorial arguments.

Let x = (xy,...,x,)€ X" and consider the following random variables on the probability space (I1,, &) , where 4

is the uniform distribution on IT,,:
Sk (M)=x4), mwell,, k=1,..,n.

Obviously, & =(¢;,...,&,) is a system of exchangeable random variables and Theorem 1 can be restated in this

particular case as follows.

Corollary 1. Let ®:[0,00)—[0,00) be a convex increasing function, x = (xy,...,x,)€ X" be such that Zlnxl- =0.

Then
(i) For any collection 8 =(9,,...,9,) € O, the following two-sided inequality holds:

E”(I)(%|xﬂ3 [)SE, O(x,|,)<E (x93, -

. 1 n n
(@) £, @I D xin ) € Er @ ],) < 2B, xn |-

In the light of Corollary 1 of interest is the estimation of £, D (]| erl-rl— II) . It can be expressed through the

coefficients x;, i=1,...,n when Xis a Banach lattice not containing /;° uniformly (see [2] and the literature therein).

In the next corollary we give only the simple and popular case of a Hilbert space containing the well-known results of
Garsia.

Corollary 2. Let H be a Hilbert space and x = (xy,...,x,)€H". Then for any p,1< p <o, the following maxi-

mum inequality holds:

" 2vpr2 o 1 p " 2p/2
ey QI I < = 3 i< ¢, QI )72 @

T
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where ¢, and C, are constants dependent on p only.

The right-hand-side fragment of (4) was proved by Garsia [9,10] for the case of real x-s.

4. Maximum inequalities for the tail probabilities.

In conclusion we give without proof the following inequality that is suggested by Theorem 1 and Corollaries 1 and
2toit.

Theorem 2. Let £=(¢&,,...,&,) bean exchangeable system of X-valued random variables with ZT‘; =0 . Then for
any 9=(4,....3,) € O, and any t > 0 the following two-sided inequality holds:
t
P&, >20) < P(&|, >1) < 2P(&9], >5) :
We can also state Theorem 2 in the following equivalent form.

Theorem2’. Let x=(x,,...,x,) € X" besuch that erl— =0 . Then forany 9=(9,....,9,) € ©, and any t>0 the
following two-sided inequality holds:
t
P(r:x, 8], >2t) SP(w:|x, |, >t) <2P(7m:x,9], >Z) .
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