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ABSTRACT. We state the following maximum inequality on rearrangement of summands. Let 1, ... , ,nx x
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where nn  ,  is the group of all permutations of  {1, …, n} and C > 0 is an absolute constant. The inequality
is unimprovable (the inverse inequality also holds for some other constant) and generalizes well-known results due
to Garsia, Maurey and Pisier, Kashin and Saakyan, Chobanyan and Salehi, and Levental. © 2011 Bull. Georg. Natl.
Acad. Sci.
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1. Introduction
The main purposes of this paper is to study the distr ibution of the random variable

||...||max|| )()1(1 knkn xxx     where XXxxx n ,)...,,( 1   is a normed space that is defined on n , the set of
all permutations of {1, …, n} with the uniform probability on it. There are a series of problems and results in analysis
where this sort of rearrangement maximum inequalities are used, see e.g. the following sources and the literature therein:
The Levy-Steinitz theorem on the sum range of a conditionally convergent series (M.I.Kadets and V.M.Kadets [1]),
Nikishin type theorems on a.s. convergence of rearranged functional series (Levental et al. [2]), orthogonal series
(Kashin and Saakyan [3]), Kolmogorov conjecture on systems of convergence (Bourgain [4]), the Ulyanov problem on
the uniform convergence of a rearrangement of the trigonometric Fourier series of a periodic continuous function
(Konyagin [5] and Sz.Gy.Revesz [6]) and the applications of compact vector summation in scheduling theory (Sevastyanov
[7]).

The first result in this direction was found by M.Kadets [8] who was solving the Steinitz problem for the Lp-spaces.
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Garsia in [9] and [10] proved that in the 1-dimensional case )( 1RX   for any n
n Xxxx  )...,,( 1  with   
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where E  is the average (expectation), 1p  and 0C  is a constant dependent on p only. This inequality led to the
well-known Garsia theorem on a.s. convergent rearrangement of an orthogonal series.

Maurey and Pisier [11] were first to show the relationship between the permutations and signs. They proved that

in the general case of a normed space X  for any Xxxx n  )...,,( 1  with  
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where nrr ...,,1  are Rademacher random variables. The relation of equivalence in (1) means that the ratios are bounded
by positive constants. It is amazing that for a long time (until the early 90s), the result of Maurey and Pisier remained

unknown. Meanwhile Kashin and Saakyan [3] have proved the following result for 1RX   in terms of distributions:

there exists a universal constant C>0 such that for any t>0  and any reals nxx ...,,1  with  
n
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However, the method used in  [3] does not work in the case of vectors. Then Chobanyan [12] and Chobanyan and Salehi
[13] used a different method based on Lemma 1 below to prove the two-sided inequality (2) for a general normed space

X. In Levental [14] for the case 1ix  and in Levental [15] for the case of niRxi ,...,1,1   the inequality (2) was

given the following form. There are universal constants C1 and C2 such that for any reals nxx ...,,1  with  
n
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collection of signs with ),...,( 1 n   and any t>0 the following inequality holds:
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where
.|...|max|| )(1)1(1 kknkn xxx    

Inequality (3) can be regarded  as a refinement of  (2)  for a general normed space X. As a corollary we single out the
following curious result: There exist universal constants C1 and C2 such that for any finite collection x=( nxx ...,,1 )of

elements of a normed space X with  
n
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inequality holds for the distribution of the Rademacher sum:
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Let us note that  inequality (3) (as well as the majority of inequalities of this paper) can be expressed in terms of
exchangeable random variables: There are universal constants C1 and C2 such that for any finite exchangeable system

)...,,( 1 n   of random variables with  
n

i1
0 , any collection of signs ),...,( 1 n   and any t>0 the following

inequality holds:
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In Section 2 we give a lemma (Lemma 1) first proved in [12,13,14]  which simplifies drastically the proofs of moment
maximum inequalities for convex increasing functions (Section 3). In Section 4 we state the main theorem on two-sided
inequalities for the tail probabilities that lead via the integration by parts formula to moment inequalities for arbitrary
increasing continuous functions.

2. Preliminaries

X stands for a normed space real or complex denotes a normed space, real or complex with the norm ||||  , n  for

the group of all permutations },...,1{},...,1{: nn   and n  for all collections of signs ,1),,...,( 1  in 

.,...,1 ni 

Given n
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In particular, .||...||max|| 11 knkn xxx  
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Below we use the permutation ),(*   defined as follows: .)...,,,...,,...,,,( 1121
* vvvuuu tts 

By nO    we denote an optimal permutation , i.e. a permutation such that  nn xx
O

||||    for any n .

Below we use repeatedly the following lemma (see [12,13,14]).

Lemma 1. (i) If n
n Xxx ),...,( 1  with 0

1
n
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3. The moment maximum inequalities for exchangeable random variables

A finite collection )...,,( 1 n   of X-valued random variables is called exchangeable,  if for each n  the

rearranged collection )...,,( )()1( n    has the same distribution in  nX  as )...,,( 1 n .

Theorem 1. Let ),...,( 1 n   be an exchangeable system of X-valued random variables with 0
1
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where nrr ,...,1  are Rademacher random variables.
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Proof. Since   is increasing and convex, using Lemma 1 we get
  ).|(|)|(|2||||2||( ** nnnnn   

Taking the expectation of both sides and using the fact that   is an exchangeable system, we come to the right-
hand fragment of  (i). The left-hand fragment of (i) also follows from Lemma 1:
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ts

  ...);,...,(;),...,( 111
  are indices for which ;1)(...,,1)( 1  suu   tvv ...1  are

indices for which 1)(...,,1)( 1  tuu   Part (ii) follows from (i) by integrating with respect to the Rademacher
random variables and using the Levy inequality.
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where 0,0,1  pp Ccp   are constants, was found by Maurey and Pisier [11], using combinatorial arguments.

Let n
n Xxxx  ),...,( 1  and consider the following random variables on the probability space ),( n , where 

is the uniform distribution on n :

....,,1,,)( )( nkx nkk   

Obviously, ),...,( 1 n   is a system of exchangeable random variables  and Theorem 1 can be restated in this
particular case as follows.

Corollary 1. Let ),0[),0[:   be a convex increasing function, n
n Xxxx  ),...,( 1  be such that .0
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In the light of Corollary 1 of interest is the estimation of  ||)||(
1
n

iir rxE . It can be expressed through the

coefficients  nixi ...,,1,    when X is a Banach lattice not containing 
nl  uniformly (see [2] and the literature therein).

In the next corollary we give only the simple and popular case of a Hilbert space containing the well-known results of
Garsia.

Corollary 2. Let H be a Hilbert space and .),...,( 1
n

n Hxxx   Then for any ,1,  pp  the following maxi-
mum inequality holds:
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where pc  and pC  are constants dependent on  p only..
The right-hand-side fragment of (4) was proved by Garsia [9,10] for the case of real x-s.

4. Maximum inequalities for the tail probabilities.
In conclusion we give without proof the following inequality that is suggested by Theorem 1 and Corollaries 1 and

2 to it.

Theorem 2.  Let ),...,( 1 n   be an exchangeable system of  X-valued random variables with 0
1

n
i . Then for

any  nn  ),...,( 1   and any t > 0 the following two-sided inequality holds:
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We can also state Theorem 2 in the following equivalent form.

Theorem 2´.  Let n
n Xxxx  ),...,( 1  be such that 0

1
n

ix  . Then for any  nn  ),...,( 1   and any t > 0 the

following two-sided inequality holds:
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sadac nn  ,  aris {1, …, n}-is yvela gadanacvlebaTa jgufi, xolo C aris absoluturi mudmiva.
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