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Characteristics of the Solution of the Consistently
Linearized Eigenproblem for Lateral Torsional
Buckling
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ABSTRACT. The consistently linearized eigenproblem has proved to be a powerful mathematical tool
for classification of buckling, based on the percentage bending energy of the total strain energy. Of
particular interest are prebuckling states with a constant percentage strain energy. The two limiting
cases of such states are membrane stress states and states of pure bending. Buckling at pure bending,
referred to as lateral torsional buckling, is the topic of this work. The transfer matrix method is used to
derive a secant stiffness matrix in analytical form. Formulation of the consistently linearized eigenproblem
by means of this matrix yields the same solution as would be obtained by a formulation based on the
tangent stiffness matrix which is an essential ingredient of nonlinear Finite Element Analysis. This
remarkable finding permits analytical verification of hypothesized subsidiary conditions for lateral torsional

buckling. © 2012 Bull. Georg. Natl. Acad. Sci.
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1. Introduction

Recently, Mang et al. [1] reported on Finite Element
Analysis (FEA) of elastic structures at special
prebuckling states which were defined as states with
a constant percentage bending energy of the strain
energy in the prebuckling regime. This regime is
characterized by a proportional increase of the
reference load. One of the two limiting cases of such
states is a membrane stress state. This case was
treated in detail in a paper by Mang and Hofinger [2].

The present work deals with the second limiting
case, which is buckling at pure bending, referred to
as lateral torsional buckling. The purpose of the paper
is to prove subsidiary conditions for this special case,

in the context of the Finite Element Method (FEM),
hypothesized in [1] on the basis of the consistently
linearized eigenproblem which was introduced by
Helnwein [3]. In order to free the proof from
discretization errors, typical for results obtained by
the Finite Element Method (FEM), these conditions
are verified through numerical evaluation of an
analytical solution obtained by means of the transfer
matrix method [4].

The paper is organized as follows: In Chapter 2,
the differential equation for the rotation of the cross-
section of a beam subjected to pure, skew bending
about the axis of the beam is presented. Chapter 3 is

devoted to the analytical solution of'this differential
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equation, followed by the formation of the transfer
matrix. The mathematical expression for the rotation
depends on a dimensionless load factor by which
the reference bending moment is multiplied, and on
the axial coordinate. Buckling at pure bending
requires a constant reference bending moment. In
Chapter 4, the secant stiffness matrix is derived
analytically with the help of the transfer matrix
method. In Chapter 5, the formulation of the
consistently linearized eigenproblem on the basis of
the secant stiffness matrix is shown to give the same
result as would be obtained by means of the tangent
stiffness matrix. Chapter 6 contains the numerical in-
vestigation. Conclusions from this work are drawn in
Chapter 7.

2. Differential Equation

Fig. 1 shows a fork-supported beam of length [ with
a constant, doubly symmetric cross-section. At its

ends, the beam is subjected to bending moments

M,, =M,, =M, =M, )

Mz,b = Mz,a = Mz = AMZ, (2)

where 1\7Iy and M, arereference quantities and Aisa

dimensionless load factor. Hence, the prebuckling

state is one of pure bending.

Fig. 1. Fork-supported beam subjected to pure, skew
bending.

The differential equation for the rotation 9 ofthe
cross-section of the beam about the x-axis (Fig. 2)
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follows from [5], considering (1) and (2), as

" 1 /L, _ _
EL9" —GI9" — H(IlMy2 + Mzz)lzﬂ
y Mz
_ MyMz (1 _ Il) AZ, (3)
EI, I,

where I, and I, are the principal moments of inertia,
I is St. Venant’s torsion constant, /,, isthe warping
constant, E is Young’s modulus, and G is the shear

modulus.
M, v
- - <
: Yy
¢ ' 2
iy w
My T
-

Fig. 2. Cross-section of the beam in the undeformed and
the deformed position of the structure.

Eq. (3) is based on the assumption of small
prebuckling rotations for which

sind =9, cosd ~ 1, @
resulting in
M, = M, + M,9, M, =M, — M. )

If M, =0o0r M, =0,0r I, =1,,(3) becomesa
homogeneous differential equation, representing an
eigenproblem. The smallest eigenvalue, 1 = A, de-
fines the buckling moment. The corresponding
eigenfunction, J(x), permits determination of the
buckling mode. If M,#0 and M,#0, and
I, #1,,9(x,4), 0 < x <, tends to infinity as 4
approaches Ag, which is in contradiction to (4).
However, this well-known deficiency of second-order
theory is no obstacle for reaching the goals of this
work.

Introducing the abbreviations
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Gl
EL,’

w

b=

Gl (Iy _ _
b g+ i) 2,
E2L1, z

cA) = T My

M, M I
_ y "z _ Y 2
a@) = EI, (1 1)’1’ ©)

Eq. 3 is rewritten as

9" (x, )=bI" (x, ) —c(DI(x, 1) =d). ()

3. Solution of the Differential Equation
and Formation of the Transfer Matrix
According to Schneider and Rubin [6], the solution
of the inhomogeneous, linear, ordinary differential
equation of fourth order in 9 (7) is obtained as

9, A) = g Wty (6, A) + 9 (W) ptp (x, ) +
9y Mz (x,2) + 9, (Dpa(x, 1) +

d(Dps(x, 1),  1>0, ®)
where
0 1)= f2(A) cosh(f (D)x) + g*(A) cos(g(Dx)
#1 ) - Zm )
©)
1y (6 ) = f(A) sinh(f(D)x) + g(4) sin(g(A)x)
2\ - )
2,/7() (10)
B cosh(f(A)x) — cos(g(D)x) 1
us(x,A) = 2/r D) , (11)
sinh(f(D)x)  sin(g(Dx)
@ %) -
Il4,(x,l) zm ’ ( )
1
us(x,A) = o) (11 (6, ) =1 = buz(x, ), (13)
with
r(d) = %bz +c(), (14)
b
f) = 5 V@), (15)
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b
g = |=5+Jr@). (16)

Formation of the transfer matrix begins with
expressing the vector ¥, the transpose of which is
defined as

I = [9(x,4),9 (x,1),9" (x,4),9" (x, V1], (17)
in terms of the vector 9, = 9, (x = 0), the transpo-
se of which is given as
95 = 19,(2), 9. (D), 9, (D), O D |1l (18)
The purpose of the last coefficient in (17) and
(18) is torender the matrix F}, in the relation
9, =Fy Y, (19)
quadratic. Making use of (8) and its first three
derivatives with respect to x, Fy, is obtained as
follows:
Fyo=
Hy (X, 2)
H(x,2)
H(x,2)

1 (x,4)
1 (x, )
1 (x, )

s (x, )
(%, A)
1 (x, A)

H(6) | (D7)
K06 A) | A 2)
K0 2) | A 2)

0 0 0 0 1 1

(20)
The constitutive equations are cast in matrix form

analogous to (19):

9, =P, - Z, @1
with

ZT =|9(x, 1), My, (x, 1), M,, (x, 1), My, (x, D)|1], (22)

and M, denote the primary torque,

w?

where My,,, M
the warping moment, and the secondary torque,

respectively, and

1 0 0 0 o
1 |
0 0 0 10
GI, |
1 |
-0 0 -—— 0 o, 23
E GI, i @)
|
0 0 LI
GI, !
6"'6"""0"""6"'5'1
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containing the compliances 1/GI, and 1/GI . The
purpose of the last coefficient in (22) is to render the
matrix P_quadratic. Solving (21) for Z, considering
(19) and a relation for $ analogous to (21), results in

Z, =P -9, =P Fy -9, =
P;l'F;a'Px'Zazan'Za' (24)
where

anZP;l'F:ca'Px (25)

is referred to as transfer matrix.

4. Secant Stiffness Matrix
Specialization of (19) for x = [ yields

9, =F;, 9, (26)

Exchanging the first two rows in (26) and replacing
9, by —9, 9, by =9, ,9, by—9,,and 9, by
—9, in order to comply with the sign convention of

the displacement method, gives
9% = 19, (), 9.0, —9 D, -9, W 1] (@7

(28)

"

9} =1-9,(D), 9,(D),9, (D), =9, () |1].

Accordingly, the matrix F},, in the relation

‘Eb = FZa "Ea (29)
is obtained as
Fi.=
(D) 4w D i—d(/l)#s'(/l)_
wA) @) () —ui(/l)i d(Dps(A)
B D HA) ) | DD )
) E0) ) )| A
0 0 0 0 i 1

In the terms in (30) with the letter symbol p the
argument x=l was omitted.

The first two lines of (29) can be written as

Q@ =T} Qo + T - Sa + o 31)
where
9" (A —9 ()
g, =1 %P, q,,={ : } 32)
9,(A) 4,(2)
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{—95'(/1)}
S =
a —19‘:”(2,) 5

(33)
7O — |:_,“2'(1) _,“1,(1)_
ba wA) (A)_ ’
@ _ A (A u
ba {—u;(/l) — 1y (A) | o
and
. {—d(l) . u)}
“ L au |- 33
Solving (31) for s, gives
S, = Kas "qa + Kab “qp + Sap> (36)
where
Kas = _(Tl(fz) - ) Tl(il) ’
Ky =(T2), @7)
and
Sap = _(Tl(fz) - “p (38)
Inversion of (29) yields
9y = (Fpa) ™ 9o (39)
where
(FZa)_lz
_tll(l) tl2(l) tl%(ﬂ’) tl4(2’) i tlS(ﬂ')_
Li(A) () 15(A)  6,(R) | 1,5(A)
) () 1, 1,3 ] 1)
) 1) 1,0 M) | @O
0 0 0 0 "T'T_

Analogous to (31), the first two rows of (39) can
be written as

Qa = T«S;) "qp t Tl(j;) "Sp Tl 41)
where
9/'(A
R s @)
_‘9b (l)
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TO 1, (A)  1,(A)
@, () 1))
@) _ tls(l) t14()“)
fav = L W) 6] @)
(65
. {tzs (l)}' “
Solving (42) for s;, gives
Sy =Ky - qy + Ky " 94 + Spa, 45)

where

-1 -1
Ky ==(Tg) T4 Koo = (1)) . @9

and
2y =1
S1a = ~(T%5) " ta- “47)
Combining (36) and (45) results in
Ks-q=P, (43)
where, in the terminology of the FEM,
K. = {(_aﬁ _!_{(_a[l 49
S|k, 'K “9)
a | ©bs

represents the secant stiffness matrix for the given
system, considered as a single finite element,

q,
q= { 2, } (50)

is the vector of nodal “displacements”, and

su - sub
pP=--"= (31
Sy~ Sh
stands for a vector of nodal “forces”. Hence (48)
represents the equilibrium equation.

Lateral torsional buckling occurs for the smallest

value of A, Ag, for which
Det K =0. (52)

The eigenvector v, , corresponding to the eigen-
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value As = A, , follows from
Ks(4) vy =0. (%3)

For A - As, q(x,4) » o, 0 < x <[, whichis
in contradiction to the assumption of small prebuck-
ling rotations (see (4)). An analogous contradiction
occurs if a simply supported beam, subjected to
eccentric compressive forces at both ends, is ana-
lyzed by means of second-order theory. As these
forces approach the Euler load, the displacements

tend to infinity.

5. Consistently Linearized Eigenproblem

The mathematical formulation of the consistently

linearized eigenproblem reads [3]
[Kr + (A=) Kr,;]-v" =0, (54)

where K _is the [ V< N] tangent stiffness matrix in the
frame of the FEM and K, , is its first derivative with
respect to A along a direction parallel to the primary

path. v, v3, ..., vy are the eigenvectors correspon-

ding to the distinct eigenvalues 21* -A, Z,Z Aoy

¥

Ay —A . Writing (3) for the first eigenpair
(A5 — 4, v}), gives
[Kr + (41— Kr;]- v1 = 0. (55)

Specialization of (55) for the stability limit
(11 —1=0, v] = vy ), where 1 = A, yields

Ky v, =0. (56)

Originally, the consistently linearized eigen-
problem was used as a tool for circumventing nume-
rical problems in the vicinity of snap — through points
and bifurcation points on nonlinear primary paths.
More recently, this eigenproblem was employed for
derivation of subsidiary conditions for buckling at
special prebuckling states, such as, e.g. , membrane
stress states.

In the following, it will be shown that for lateral

torsional buckling the eigensolution obtained from
[KS + (il _A) KS,l] - ﬁl = 0 (57)
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is the same as the one resulting from (55), i.e.,

1D =h@, i) =201 (58)

The reason for this remarkable result is that for
lateral torsional buckling,

vi(A) =9,(1) =v; = const. (59)

which, e.g., is not the case for torsional flexural
buckling. Consideration of (59) in (55) and (57), pre-
multiplication of the resulting relations by v,, and
combination of the so-obtained equations, consi-

dering (58.1), gives

v, Ke-v, v -Kpewy ©0)

Vi 'KT,A Y

v, -Kg ;v

As follows from (53) and (56), (60) is satisfied at
the stability limit. To check whether this relation is
also fulfilled for A=0, (48) is derived with respect to A:

Ks,-q+Ks-q,=P,, (61)
where
P, =Kr-q, (62)

represents the rate form of the equilibrium equations.
Specialization of (61) for A =0 — g = 0 obviously
yields

K=K, (63)
Combination of (61) and (62), followed by

derivation with respect to A, results in

Ksyn-q+2Ks,-q; +Ks-q =
Kr,-q,+Kr-q;. (64)

Specialization of (64) for A=0 including conside-
ration of (63) gives
2K, = K,,. (65)

As follows from (63) and (65) and from the positi-
ve definiteness K (4=0)=K , where K is the constant
small — displacement stiffness matrix [ 7], satisfaction

of (60) requires

Ks,l-v1=0 = KT’l-v1=0. (66)
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Specialization of (55) and (57) for A = 0 and
consideration of (59) and (66) yields

AL(A=0)=2(1=0) = co. (67)

In Chapter 6, (67) will be verified numerically.

For lateral torsional buckling, the eigenproblem
(57) which is based on an analytical result for the
secant stiffness matrix K, is superior to the
eigenproblem (55) in the frame of the FEM. Hence,
there is no need to use (55) for numerical verification
of subsidiary conditions for lateral torsional buckling,
hypothesized by means of this relation.

The basis for derivation of such conditions is the

relation

K+ Q- K.,] v} =0, 68
(IKr + =D K] 1) ], (63)
resulting in [1]

. . v, - K -y

Mjpan =3 ,2/1/1 2 LA 1 (69)

vl'KT,/l V1

For buckling at general stress states, charac-
terized by a percentage bending energy of the strain
energy that increases in the prebuckling regime with

increasing A,
Al > 0. (70)

For buckling at special stress states, characte-
rized by a constant percentage strain energy in the

prebuckling regime,

(71

with the exception of buckling from a membrane stress

AI,W = 0,

state, for which

X 0. (72)

Hence, according to the above hypotheses, for
lateral torsional buckling, characterized by 100% of
percentage bending energy of the strain energy in
the prebuckling regime,

2V Ky 50

*2 _
11,/1/1 -5 ’

73
3 vl-KT’/1~v1 7
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as follows from substitution of (71) into (69).
Lateral torsional buckling represents a limiting
case of torsional flexural buckling for which (70) holds.
By contrast, lateral buckling is no limiting case of
buckling at a constant percentage bending energy of
the total strain energy in the prebuckling regime. This
fact is reflected by different signs of the curvatures
of the eigenvalue curves A3 (1) at the stability limit
where A7 ; = 0 [1]. (For convenience, Aj(A) is oc-
casionally referred to as the eigenvalue curve, al-
though A7 — A is actually the eigenvalue.) Lateral

torsional buckling is the only case of (71) for which

X, >0 (74)

holds in (73). In Chapter 6, (74) will be verified

numerically.

6. Numerical Investigation

6.1 Solution of the eigenproblem

The numerical investigation consists of stability
analysis of a beam as shown in Fig. 1. The structural
steel shape is a HE-A 200 [8]. The input data for the
analysis are given as follows:

l= 2m,

I, =3690-10"%m*, I, =1340-10"°m*,

Iy =21.1-10%m*, 1, =10.8-10"%m°,

E =21-10"kN/m? v =0.3,

M, = 80 kNm, M, = 1 kNm.

Because of i, + 0, the deformed axis of the beam
is a space curve. Since, M, /M, =1/80, the devi-
ation of this curve from the plane curve that would
be obtained for M, = 0 is small, representing an
imperfection that is characterized by a prebuckling
rotation 9 of the cross-section of the beam about
the x-axis (Fig. 2).

The boundary conditions of the fork-supported

beam are given as

9, =9, =0, (75)
and

M,,=-El,9, =0 = ¥, =0,
M,,=—El,9 =0 = ¥, =0. (76)
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0 i 0.5 1.0 15 2.0

Fig. 3. 9(x,A=1).

To compute 9, Z, must be known (see (21)).
Determination of Z, requires knowledge of Z,, (see
(24)). The transpose of Z,, follows from specialization
of (22) for x= 0. Considering the boundary conditions

at this point, Z% is obtained as

Zl =0, Mp,,, 0, My, |1]. (77)

Use of the first and the third line of the transfer

matrix Fp, gives

Fl'm,lZ(A‘) Fl’m,l4(2‘) MTp,u(A') _ _F;)u,IS(}“) 78
Fl’m,_”Z(ﬂ') Fl’)a,34(ﬂ') MTs,u(A') - _F;m,zs()“) ( )

which can be solved for My, , and My, .

Fig. 3 shows the function 3(x,4), evaluated for
A=1,i.., for the reference moments M, and M, (see
(1)and (2)).

Since $(x,A) is symmetric with respect to midspan,
soare M, and M (see (5)) and

Mw = _Elwﬁ” . (79)

Table 1 contains the results for M,7 and M, at
five points in the interval <0, 2.0>. The deviations of
M, from M, =80kNm and of M, from M,=1kNmare
small.

Symmetry of M, and M, entails symmetry of w
and v.

Since
My, = GIY', Mys = —El,9" (80)
are antisymmetric with respect to midspan, so is

My = My, + M. @D
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Table 1. M, (x, A=1), M.(x, 1=1)

x [m] M, [kKNm] M;[kNm]
0.0 80 1
0.5 79.99991 1.00737
1.0 79.99987 1.01032
1.5 79.99991 1.00737
2.0 80 1

Since 9, (1) tends to infinity as A approaches 1 s
(see Fig.4), so does My, ,(1). By analogy, in this
case also Mr;,(4) tends to infinity. This characte-
ristic feature of second-order theory has no influence
on the following solution of the underlying eigen-
problem.

The zeros of the determinant of the coefficient
matrix
Uy = |:F;m,12(ﬂ') By s (/1)}

Frun(A) B, 5u(2) (82)

in (78) are the eigenvalues of the underlying eigen-
problem. The first two eigenvalues are obtained as
4,=8.899 and 1,=32.331. 1, =4, is the load factor that
defines the buckling moment A¢M, . Fig. 5 shows
the corresponding eigenform, representing a spatial
halfwave. To obtain this eigenform requires specifi-
cation of the symmetry condition

9, =—19,. (83)
Herein, J, is chosen as 1.
Fig. 6 shows the eigenform corresponding to 4,,
consisting of two spatial halfivaves. To obtain this
eigenform requires specification of the antisymmetry

condition

al

9, = 9,. (84)

To verify that the zeros of the determinant of the

Fig. 5. First eigenform (buckling mode)
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10-9'(M)

Fig. 4. 9,(1)

secant stiffness matrix K (see (49)) are identical with
the zeros of the determinant of the matrix U (see (82)),

the boundary conditions

9,=9,=0 ()

for the eigenform must be considered. Accordingly,

the number of the elements of the eigenvector is

reduced from four to two, resulting in
(80)

The minus sign in (86) correlates with the minus
sign in the expression for g, (see (32)). Because of
the reduction of the eigenvector, the secant stiffness
matrix K; must be reduced froma [4 x4]toa [2 x 2]
submatrix:

£ ={K“(l) KB(A)}.

K, (A) K,(2) (87)

Although Det K s(A) is different from Det U(A)
(see Fig.7), the first two zeros of Det K s(4) were found
to agree with the corresponding zeros of Det U(A).

The location of the vertical asymptote of the func-
tion Det K s(A) between its first and second zero

Fig. 6. Second eigenform
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Det I/(\vg'(k)
10

-10 (a)
Det U (L)
20

15
10

(b)

Fig. 7. (a) Det K (), (b) Det U(%)

agrees with the location of the point of intersection
of the mechanically insignificant second branch of
the load-displacement curves, consisting of infinitely
many branches, with the A-axis. This follows from

inversion of (48), resulting in

q=K,'-P, Det K, #0, (88)
where
. \T
A Adj K
K'= u (89)
Det K
For
Det KS =00, (90)
K!=0 = g¢=0. 1)

6.2. Characteristics of the consistently linearized
eigenproblem
Formulation of the consistently linearized eigenprob-

lem on the basis of K s(A4) and v gives

Bull. Georg. Natl. Acad. Sci., vol. 6, no. 1, 2012

[K; +(A-)K,,19=0, (92)
where
gl
v=<: ‘L. (93)
-9
Normalization of v such that
por=1 94)
yields
A \2 A \2
Wl=(8) +(-9;) =1. (95)

The solution of (92) consists of two eigenpairs:
(=4 %), (B=4, ). (96)

The first eigenpair refers to symmetric eigenforms,

for which

$ =-9, 7

resulting in

A 1 |1 ¢
vV, =—F— = const.
1 \/E 1

The second eigenpair refers to antisymmetric

49

eigenforms, for which

¥ =9, 99
resulting in

1 1
b, = —— = const. 100
el -

The independence of v, and v, of A verifies (59).
The two eigenvectors satisfy the orthogonality con-
dition
v, v, =0. (101)

K 5(4) is an ingredient of an analytical solution of

the underlying eigenproblem. Hence,

Det K (1)=0 (102)
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o (see Fig 9(a)). Specialization of (92) for A = A; and
premultiplication of the obtained relation by v, gives
20 1
}L«R_lz_AVI.AS(lR).vi =_(_OO)=_0’ (107)
15 - v, K, (Ag) v, (—0)
because the quadratic form in the denominator in
10 1 (107) is tending more strongly to —co than the one in
Ag the numerator (Fig. 9). The mathematical meaning of
Ar (q( Az )=0) was explained in the last paragraph of
51 Subchapter 6.1.
¥o; . . » 7. Conclusions
0 5 10 15 4,20 A . .
» Remarkably, the solution of the consistently
Fig. 8. 1,(1) linearized eigenproblem for lateral torsional buckling,

for countably infinitely many values of 1 > 0,
associated with zero eigenvalues

2y —A=0, (103)
and
A, —A=0. (104)

The smallest zero eigenvalue represents the
stability limit A=A, = il and, thus, defines the
buckling moment A¢ 1\71y . Fig. 8 illustrates the function

A (4).
Fig. 8 confirms 4; ;(45) = 0 [1] and verifies the
hypotheses Zl,u (Ag) > 0 (see (74), recalling that

At =1;)and il (0) = (see(67)). Closer inspection
of il (A) also seems to confirm the hypothesis that
the curvature of this curve becomes a minimum at S,
which implies 7, ,;; (A5)=0 (see(71)).
Continuation of the curve il (1) beyond A = A
shows that (103) also holds at A = A4, although

A, (Ag) #0. (105)
For A = A4,
Det K (1) — —0 (106)

Bull. Georg. Natl. Acad. Sci., vol. 6, no. 1, 2012

formulated by means of an analytical representation
of the secant stiffness matrix, is identical with the

(a)

0.4
-0.81 |

-1.21 i

(b) i

Fig. 9. (a) v;- IA(S(M"% ,(b) ¥, 'IA(S,A(A)"AH .
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one resulting from formulation of such an eigen-
problem with the help of the tangent stiffness matrix.
The latter represents an essential ingredient of
nonlinear FEA. The secant stiffness matrix was
derived by means of the transfer matrix method.

* Characteristics of the eigenvalue curve A; (1)
resulting from the consistently linearized eigenpro-
blem are

(a) a minimum of the curvature of this curve at the

stability limit where A} =1, and

2,(4) = 0, %, (A) > 0, and
(b) a vertical asymptote of the curve at A=0, i.e.,

ng.sb'o 49

1(A=0) = oo

The characteristic feature of the eigenvector
function vj (1) is its constancy. Hence, the solution
of the consistently linearized eigenproblem applied
to lateral torsional buckling takes up a position
between the general case, where both the eigenvalue
and the eigenvector function are variables, and the
special case of linear stability problems, where both
are constants.

* The presented solution closes a gap in a new
concept of categorization of buckling by means of
spherical geometry.
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