On Some Approximation Properties of a Generalized Fejér Integral

Duglas Ugulava*

* Niko Muskhelishvili Institute of Computational Mathematics, Georgian Technical University, Tbilisi

(Presented by Academy Member Nikoloz Vakhania)

ABSTRACT. Problems of approximation in spaces of p-integrable for some $p \geq 1$, as well as essentially bounded functions defined on a locally compact Abelian group are considered. Analogs of Fejér well-known positive operators are taken as approximate aggregates.

Key words: locally compact Abelian group, positive operator, Fejér integral, approximation.

In papers [1-5] problems of approximative nature are considered for some spaces of real or complex valued functions and also measures defined on a locally compact Abelian group. Let G be a locally compact Abelian Hausdorf group and \hat{G} be the dual group, i.e. the set of all characters on G. \hat{G} is also a locally compact Abelian group in the topology of uniform convergence of characters on compact subsets of G. $U_{\hat{G}}$ will stand for the collection of all symmetric compact sets from \hat{G} which are closures of neighborhoods of the unity in \hat{G}. $KT = \{g : g = g_1g_2, \ g_1 \in K, \ g_2 \in T\}$ will stand for the product of the sets K and T, while $(1)_K$ will denote the characteristic function of the set K. By $L^p(G) = L^p(G, \mu)$, $1 \leq p < \infty$, is denoted the space of p-th power integrable functions on G with respect to the Haar measure μ. $L^\infty(G) = L^\infty(G, \mu)$ denotes the space of essentially bounded on G functions with respect to μ. For arbitrary K and T in \hat{G} we consider the following functions defined on G ([6], Ch.5, §1)

$$V_{K,T}(g) = (\text{mes}T)^{-1}(\hat{1})_T(\hat{g})(\hat{1})_{KT}(g).$$ (1)

Here and in the sequel by \hat{f} (resp. \tilde{f}) is denoted the Fourier (resp. the inverse) transform of $L^p(G, \mu)$, $1 \leq p \leq 2$. Usually, the Haar measures on G and \hat{G} are normalized so that the inversion formula $f = (\hat{f})^{-1}$ holds for functions $f \in L^1(G)$, $\hat{f} \in L^1(\hat{G})$.

In connection with the density problem we have introduced a definition of $W^p(K)$, $K \in U_G$ of continuous functions $f \in L^p(G)$, such that

$$f(g) = (f * V_{k,T})(g) = \int_G f(h) V_{k,T}(h^{-1}g) d\mu(h) = \int_G f(h) V_{k,T}(h^{-1}g) dh,$$

for all $g \in G$, $T \in \hat{G}$.

If $G = \mathbb{R}^m$, $m \geq 1$, and K is a symmetric body of \mathbb{R}^m, the class $W^p(K)$, $1 \leq p \leq \infty$, coincides with the well-known class of entire functions of exponential type K whose traces on \mathbb{R}^m belong to the space $L^p(\mathbb{R}^m)$ [7, 8]. For the case of compact G the functions from $W^p(K)$, $1 \leq p \leq \infty$, are finite linear combinations of characters of G.

In papers [1, 2] it is proved that $W^p(K)$, $1 \leq p \leq \infty$, is the shift invariant closed subspaces of $L^p(G)$. In the case when $1 \leq p \leq 2$, the set $W^p(K)$ coincides with the set $F^p(K)$, which consists of continuous functions on G, whose Fourier transform supports belong to K. Moreover, the set of functions $W^p(K)$ for all possible compact $K \in U_G$ is dense in $L^p(G)$, $1 \leq p < \infty$. In connection with the density problem we remark the following.

Let K be a symmetric compact set from \hat{G}. In [4] we have introduced a definition of B-property, which is an analogy of the notion of convexity for locally compact Abelian groups. According to this definition, a set K possesses the B-property if the element $g \in \hat{G}$, which admits for a certain natural number n the representation $g^n = g_1^n \cdots g_k^n$, where n_1, \ldots, n_k are natural numbers, $n = n_1 + \cdots + n_k$, while $g_1, \ldots, g_k \in K$, belongs to K. If T is a set from U_G, without the B-property, it can be put in a $K \in U_G$ which does have the B-property.

To construct such a minimal set K, we must consider all elements $g \in \hat{G}$ which can be represented in a form $g^n = g_1^n \cdots g_k^n$, where $g_1, \ldots, g_k \in T$, $n_1, \ldots, n_k \in N$, $n = n_1 + \cdots + n_k$ and connect them to T such g, if $g \not\in T$. If we connect to T all such g, then the obtained set K possesses the required property. Really, let us consider elements $g_1, \ldots, g_k \in K$ and suppose that $g^n = g_1^n \cdots g_k^n$, for some $g \in G$, $g_1, \ldots, g_k \in K$, $n_1, \ldots, n_k \in N$, $n = n_1 + \cdots + n_k$. It suffices to consider the case $k = 2$. Let $g_1^n = g_{11}^n \cdots g_{1h}^n$, $g_2^n = g_{21}^n \cdots g_{2s}^n$, $n_1 = n_{11} + \cdots + n_{1h}$, $n_2 = n_{21} + \cdots + n_{2h}$, $g_{1i} \in T$, $i = 1, \ldots, h$, $g_{2j} \in T$, $j = 1, \ldots, l$. Let n be the least common multiple of the numbers n_1 and n_2, and $n = n_1 m_1 = n_2 m_2$. Let $g = g_1^s g_2^s$, $s = s_1 + s_2$ ($s_1, s_2 \in N$). Let us prove that $g \in K$. We have $g^n = (g^s)^n = g_1^{mn_1} g_2^{mn_2} = g_{11}^{mn_1} \cdots g_{1h}^{mn_1} g_{21} g_{2s}^{mn_2} \cdots g_{2s}^{mn_2}$. Here $n_1 m_1 s_1 + \cdots + n_{1h} m_{1h} s_1 + n_{21} m_{21} s_2 + \cdots + n_{2h} m_{2h} s_2 = ns$, $g_{11}, \ldots, g_{2s} \in T$ and by construction of K, we have that $g \in K$. Thus K has the B-property. Inclusion $K \in U_G$ is clear. Thus every $T \in U_G$ may be put in some $K \in U_G$, which has the B-property. It is shown in [1], that $W^p(T) \subset W^p(K)$, $1 \leq p \leq \infty$, for every $T \subset K$, and therefore we can take the sets $W^p(K)$ as a dense set in $L^p(G)$ for all $K \in U_G$, having the B-property too.
Let I be an ordered unbounded set $I \subset \mathbb{R}^+$ and consider a generalized sequence of sets $K \in U_{\hat{G}}$, such that $K_\alpha \subset K_\beta$ if $\alpha < \beta$ ($\alpha, \beta \in I$) and $\bigcup_{\alpha \in I} K_\alpha = \hat{G}$. For a such sequence $L^p(\mathbb{R}^m)$, $1 \leq p \leq \infty$ we have studied in [5] the following sequence of positive operators

$$
\sigma_{K_\alpha}(f)(g) = (f * V_{K_\alpha})(g) = \int_G f(h) V_{K_\alpha}(h^{-1}g) dh,
$$

(2)

where

$$
V_{K_\alpha}(g) = (\operatorname{mes} K_\alpha)^{-1}((1)_{K_\alpha}(g))^2, \quad K_\alpha \in U_{\hat{G}}.
$$

(3)

The kernels (3) are mentioned in [6], (Ch.5, §1) and they represent the limiting case of the kernel $V_{K,T}$ defined by (1), when K converges to the unity of \hat{G} and T is replaced by K_α. In [5] it is proved that if $f \in L^p(G)$, $1 \leq p \leq \infty$ then $\sigma_{K_\alpha}(f) \in W^p(K_\alpha^2)$.

Some results concerning positive linear operators and the approximation of continuous functions on locally compact Abelian groups are given in [9]. First of all the positive operators (2) are of importance as in the case $G = \mathbb{R}^m$ they coincide with the well-known Fejér operator. For example, if $m = 1$, $I = (0, \infty)$, $\alpha \in I$ and $K_\alpha = [-\alpha, \alpha]$, we have the sequence of operators (see, for example, [10], 3.1.2, p. 122)

$$
\sigma_{[-\alpha, \alpha]}(f)(x) = \sigma_\alpha(f)(x) = \frac{2}{\pi \tau} \int_{-\infty}^{\infty} f(t)(x-t)^2 \sin^{\frac{\tau}{2}}(x-t) dt, \quad \tau \in \mathbb{R}^+.
$$

In the case when $G = \mathbb{R}^m$, $m \geq 1$ and K is the ball of a radius $\tau \in \mathbb{R}^+$, the kernel of the operator (2) takes the form

$$
V_k(x) = (\alpha_m)^{-1} |x|^{-m} J_{m/2}^2(\tau |x| / 2), \quad x \in \mathbb{R}^m,
$$

where $J_{m/2}$ is the Bessel function of order $m/2$ and α_m is the area of the m-dimensional unit sphere. In that case, the operator (2) is studied in [11] in connection with the saturation problem in $L^p(\mathbb{R}^m)$, $1 \leq p \leq \infty$. In [5] it is proved that if $f \in L^p(G)$, $1 \leq p < \infty$, and the sequence of sets $K_\alpha \in U_{\hat{G}}$ satisfies the condition

$$
\lim_{\alpha \to \infty} \frac{\operatorname{mes}(TK_\alpha)}{\operatorname{mes}(K_\alpha)} = 1
$$

(4)

for all fixed $T \in U_{\hat{G}}$, then

$$
\lim_{\alpha \to \infty} \| f - \sigma_{K_\alpha}(f) \|_{L^p(G)} = 0.
$$

Under the condition (4) the sequence (2) converges to f also in the space $L^\infty(G)$, but in the weak* topology of $L^\infty(G)$. An analogous result is valid also in the space $M(G)$ of bounded regular complex valued Borel measures on G [5]. In addition to these results we state the following

Theorem 1. Let $\{K_\alpha\}$ be a sequence in $U_{\hat{G}}$ satisfying (4) and $S \subset G$ is a compact set. If a function $f \in L^\infty(G)$ is continuous at a neighborhood of S, then $\sigma_{K_\alpha}(f)$ converges to f uniformly on S as $\alpha \to \infty$.

Proof. Since f is uniformly continuous on S, given $\delta > 0$ find a neighborhood $V \in U_{\hat{G}}$ of the unity of
such that
\[|f(hg) - f(g)| < \delta / 2 \quad \text{for all } g \in T, \ h \in V. \] (5)

In [5] (Proposition 4) it is proved that under assumption (4) the sequence of kernels \(\{V_{K_\alpha}\} \) represents an approximate unity. This means that for every fixed \(U \in U_{\hat{G}} \) the following equalities hold
\[
\lim_{\alpha \to \infty} \int_{G/V} V_{K_\alpha}(g)dg = 0, \quad \int_G V_{K_\alpha}(g)dg = 1.
\]
Therefore there exists a \(\alpha_0 > 0 \) such that
\[
\int_{G/V} V_{K_\alpha}(g)dg < \frac{\delta}{4\|f\|_{L^p(G)}}, \quad \text{for all } \alpha > \alpha_0. \] (6)

By use of the equality \(\int_G V_{K_\alpha}(g)dg = 1 \) we have

Applying (5) and (6), and representing the integral of the right-hand as \(\int_V + \int_{G/V} \), we obtain
\[
\sup_{g \in T} |f(g) - \sigma_{K_\alpha}(f)(g)| \leq \delta / 2 + \delta / 2 = \delta, \quad \text{when } \alpha \to \infty.
\]

Now we prove that the rate of convergence of the operators \(\sigma_{K_\alpha} \) to the identical operator in general is not greater than \(\text{mes} K_\alpha \).

Theorem 2. Let \(f \in L^p(G), \ 1 \leq p \leq 2, \) and a sequence of sets \(K_\alpha \subset U_{\hat{G}} \) satisfy the condition
\[
\limsup_{\alpha \to \infty} \{\text{mes} K_\alpha \backslash \text{mes} (K_\alpha \cap (\chi K_\alpha))\} \neq 0 \] (7)
for any fixed \(\chi \in \hat{G} \). Then from the condition
\[
\|f - \sigma_{K_\alpha}(f)\|_{L^p(G)} = o(\text{mes} K_\alpha), \quad \alpha \to \infty, \] (8)
it follows that \(f(g) = 0 \) a.e. on \(G \).

Proof. Since \(f \in L^p(G), \ 1 \leq p \leq 2, \) and \(V_{K_\alpha} \in L^1(G) \) for all \(\alpha \in I \), we have for the Fourier transform of (2) ([12], Ch.8)
\[
(\sigma_{K_\alpha}(f)) \hat{\chi} = \hat{f}(\chi)(V_{K_\alpha}) \hat{\chi}, \] (9)
and
\[
(V_{K_\alpha}) \hat{\chi} = (\text{mes} K_\alpha)^{-1}((1)_{K_\alpha} * (1)_{K_\alpha}) \hat{\chi}.
\]

It is clear that \((1)_{K_\alpha} * (1)_{K_\alpha} \in L^1(\hat{G}) \) and \((1)_{K_\alpha} * (1)_{K_\alpha} \hat{\chi} \in L^1(G) \). Therefore we have from (9)
\[
(\sigma_{K_\alpha}(f)) \hat{\chi} = \hat{f}(\chi)(\text{mes} K_\alpha)^{-1}((1)_{K_\alpha} * (1)_{K_\alpha})(\hat{\chi}^{-1})
\]
It follows from here
\[(\text{mes } K_\alpha)(f - \sigma_{K_\alpha}(f))^\vee (\chi) = \hat{f}(\chi)(\text{mes } K_\alpha - \int_{K_\alpha}(h^{-1}\chi^{-1})dh). \] (10)

The upper bound of the \(L^p \) norm \((p^{-1} + q^{-1} = 1)\) on the left-hand is, according to the Hausdorf inequality ([12], §31.22), \((\text{mes } K_\alpha) \| f - \sigma_{K_\alpha} \|_{L^q(G)}^p\). Then it follows from (8) and (10)
\[
\lim_{\alpha \to \infty} \| \hat{f}(\chi)(\text{mes } K_\alpha - \int_{K_\alpha}(h^{-1}\chi^{-1})dh) \|_{L^q(G)}^p = 0.
\]

According to (3), this means that \(\| \hat{f} \|_{L^q(G)} = 0\), i.e. \(f(g) = 0 \) a.e. on \(G ([12], \S 31.31) \).

Now we give examples of operators \(\sigma_{K_\alpha} \) for some groups \(G \) and sets \(K_\alpha \):

1. Let \(G = \mathbb{R}^m, m \geq 1 \) and consider the sets \(K_\alpha = \{ u : u \in \mathbb{R}^m, d(u) \leq \alpha \}, \alpha > 0 \), where \(d^2(u) = \langle u, Au \rangle = \sum_{k,l=1}^m a_{k,l}u_ku_l \) and \(A = (a_{k,l})_{k,l=1}^m \) is a positive definite matrix. It is clear that \(K_\alpha \subseteq U^\alpha_G = U_{\mathbb{R}^m} \). It is possible to calculate \(\langle 1 \rangle_{K_\alpha} \) by analogy to [13] (we must keep in mind that according to our agreement the Haar measure \(\mu \) in \(\mathbb{R}^m \) is normalized in such a way that \(\mu(E) = (2\pi)^{m/2}l(E), \quad E \subseteq \mathbb{R}^m \), where \(l(E) \) is the Lebesgue measure of \(E \)). Actually, we can obtain the following representation of \(\sigma_{K_\alpha} \)
\[
\sigma_{K_\alpha}(F)(x) = \frac{2^m\pi^{m/2}\Gamma(m/2 + 1)}{\sqrt{\det A}} \int_{\mathbb{R}^m} f(t + x) J_{m/2}((\alpha/2)\sqrt{(x,A^{-1}x)}) dx,
\]
where \(J_{m/2} \) is the Bessel function of order \(m/2 \) and \(\Gamma \) is the Euler gamma function.

Let us consider the matrix \(B \), whose columns are orthonormal eigenvectors of \(A \). Let \(B' \) be the matrix conjugate to \(B \) and \(A \) be the diagonal matrix composed with the eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_m \) of \(A \). It is well known that \(A = B'B, \det A = \det A, \det B = 1 \). The change of variables \(u = Bv, v_k = \lambda_k^{1/2}z_k \) gives
\[
\langle u, Au \rangle = (Bv, BAv) = (v, B'ABv) = (v, Av) = \| z \|^2 = z_1^2 + z_2^2 + \cdots + z_m^2.
\]

Thus \(d(u) \leq \alpha \Leftrightarrow \| z \| \leq \alpha \). This linear correspondence between \(K_\alpha \) and \(C_\alpha := \{ z \in \mathbb{R}^m : \| z \| \leq \alpha \} \) is \(z = (BA)^{-1}u \). By this map the image of \(C_\alpha + \mu \) for any \(\mu \in K_\alpha \) is translation of \(C_\alpha \) by the vector \(\mu' = (BA)^{-1}\mu \). It is clear that \(\text{mes } K_\alpha \setminus \text{mes } (K_\alpha + \mu) = \text{mes } C_\alpha \setminus \text{mes } (C_\alpha + \mu') \). It may be proved by calculation that \(\text{mes } C_\alpha \setminus \text{mes } (C_\alpha + \mu) \geq C(\mu')\alpha^{m-1} \), where \(C(\mu') \) depends only on \(\mu' \) a positive number. Thus, in the considered example condition (7) is satisfied. Therefore Theorem 2 implies that in this example the approximation by operators (11) of order \(\alpha \) of nontrivial functions from \(L^p(\mathbb{R}^m) \), \(1 \leq p \leq 2 \), is impossible.

2. If \(G \equiv \mathbb{Z} \) is the group of whole numbers, then \(\hat{G} = E \) is the unit circumference from \(\mathbb{R}^2 \) up to an isomorphism. Characters of \(G \) have the form \(\chi_L(n) = e^{it}, n \in \mathbb{Z}, t \in E \). Let \(K_\alpha = \{ e^{i\theta} : -\pi + \pi/\alpha \leq \theta \leq \pi + \pi/\alpha \quad 1 < \alpha < \infty \} \). Take, as a dual measure on \(E \), the arc length divided into \(i\sqrt{2\pi} \). We have
(1)_{K_{\alpha}}(n) = \frac{1}{i\sqrt{2\pi}} \int_{K_{\alpha}} \xi^n d\xi = \begin{cases} \frac{\sqrt{2}}{\sqrt{\pi}} \frac{(\alpha - 1)(n + 1)}{\alpha}, & n \neq -1, \\ \frac{\sqrt{2}}{\sqrt{\pi}} \frac{\alpha - 1}{\alpha}, & n = -1, \end{cases}

and therefore, in this case
\[\sigma_{K_{\alpha}}(f)(n) = \frac{\alpha}{(\alpha - 1)^2 \pi} \sum_{\xi = k + \alpha, \xi \neq \alpha}^{\infty} f(k) \sin^2 \left(\frac{\alpha - 1}{\alpha} \frac{(n - k + 1)(n + 1)}{(n + 1)^2} \right) + \frac{\alpha}{\pi} f(n + 1). \]

3. Let \(G = \mathbb{R}^+ \) be the multiplicative group of positive integers with the unit \(e = 1 \). This group has a character \(\chi_\xi = \xi^\alpha \), where \(x \in \mathbb{R} \) and \(G = \mathbb{R}^+ \) up to an isomorphism. Take as \(K_{\alpha} \) the interval \(K_{\alpha} = [-\alpha, \alpha] \), \(\alpha \in \mathbb{R}^+ \). Then
\[(1)_{K_{\alpha}}(\xi) = \int_{-\alpha}^{\alpha} \xi \xi \sin \left(\frac{\alpha \ln \xi}{\ln \xi} \right) d\xi = 2 \sin \left(\frac{\alpha \ln \xi}{\ln \xi} \right) \]

And, therefore, in this case
\[\sigma_{K_{\alpha}}(f)(x) = \frac{1}{\alpha \pi} \int_{0}^{\infty} f(h) \sin^2 \left(\frac{\alpha \ln \frac{x}{h}}{\ln \frac{x}{h}} \right) dh. \]

4. Let \(G = \mathbb{Q}_p \) be the field of the \(p \)-adic numbers with a prime \(p \). With respect to the additional operation of \(p \)-adic numbers, \(\mathbb{Q}_p \) is a locally compact Abelian group [14]. Its dual group is isomorphic to the addition group \(\mathbb{Q}_p \). The character \(\chi_\xi \), corresponding to a \(p \)-adic number \(\xi \), has the form \(\chi_\xi(x) = \exp(2\pi i \{ \xi x \}^p) \).

Here \(\{ x \}_p \) is defined by the \(p \)-adic expansion \(x = \sum_{n} a_n p^n \) as
\[\{ x \}_p = \begin{cases} \sum_{n = \text{ord}_p(x)}^{-1} a_n p^n, & \text{if } \text{ord}_p(x) < 0, \\ 0, & \text{if } \text{ord}_p(x) \geq 0, \end{cases} \]

and \(\xi x \) is the product of \(p \)-adic numbers \(\xi \) and \(x \) in the field \(\mathbb{Q}_p \).

Let \(n \in \mathbb{Z} \), \(\alpha = p^n \) and \(K_{\alpha} \) be the \(p \)-adic ball of the radius \(p^n \) with the center in zero, i.e. \(K_{\alpha} = \{ h \in \mathbb{Q}_p : |h|_p \leq p^n \} \), where \(|h|_p \) is the \(p \)-adic norm of \(h \). The Haar measure of this ball is \(\text{mes} K_{\alpha} = p^n \) ([14], §4, (2.3)). By means of the formula ([14], §4, (3.1))
\[\int_{K_{\alpha}} \chi_\xi(x) dx = \begin{cases} p^n, & \text{if } |\xi|_p < p^{-n}, \\ 0, & \text{if } |\xi|_p > p^{-n+1}, \end{cases} \]

we obtain that in the considered case the operator \(\sigma_{K_{\alpha}}(x) = p^{-n} \int_{\mathbb{Q}_p} f(\xi + x) d\xi \left(\int_{|\xi|_p < p^n} e^{2\pi i \chi_\xi(y)} dy \right)^2 = p^n \int_{|\xi|_p < p^{-n}} f(\xi + x) d\xi \).
მათემატიკა

ფუნქციის განინგალიფიკული ანგულარი აპროქსიმაციის თეორემის შესახებ

დ. უგულავა

საქართველოს სახელმწიფო უკანგური კომპანია, თბილის თექნიკური უნივერსიტეტი მათემატიკის ინსტიტუტი, თბილისი

(მარტობილი ბიუოლოგის თ. ანგულავის მიერ)

მათემატიკაში ეთანხმდება კომპაქტურ არენის აღჭურვილების ადგილი საქმელში ქორწილად და აღქრდა არგუმენტით შესაბამისი ფუნქციით აპროქსიმაციის ჰაიველობა. შესაფრთხებებმომქმედი აღსანიშნავი არგუმენტით აღქრდა ფუნქციის აღჭურვილობის ადგილებზე.

REFERENCES

Received October, 2011