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ABSTRACT. The paper announces the boundedness criteria of majorants for S-order (8 >0) Cesaro
and Abel-Poisson means in weighted grand Lebesgue spaces L” »0 (1 <p <o, 8>0). Itis claimed that in

these spaces the mean continui%y property fails to hold. The fractional order moduli of smoothness are

introduced in a subspace of L” "% Where the set of smooth functions is dense. Using these characteristics,

direct and inverse inequalities of the constructive theory of functions are obtained. The rate of
approximation by f-order (3 >0) Cesaro means is estimated for a function from the above-mentioned
subspace. In weighted grand Lebesgue spaces, an analog of the well-known Bernstein inequality is
established for the derivatives of trigonometric polynomials. © 2072 Bull. Georg. Natl. Acad. Sci.
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The present paper announces the authors’ recent results on the approximation of functions by Fourier

operators in some new function spaces.
Let T= (—7[,7[) and 1< p <o, 6>0. The weighted grand Lebesgue space of 27-periodic functions is
defined by the norm
1

0 . Pz
||f~||L,2,).e =O<i1ip_]{§—ﬁJT‘|f'(x)|P w(x)dXJ

P

Here w is a weight function, i.e. an a. e. positive function which is integrable on T. When w=1, we set
=
In the weighted case, grand Lebesgue spaces on the bounded sets of a Euclidean space were introduced

by T. Iwaniec and C. Sbordone [1] for 8= 1, and by L. Greco, T. Iwaniec and C. Sbordone [2] for 6> 1.Itisa
well-established fact that these spaces are non-reflexive non-separable ones.
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For the boundedness problems in L’;,)’g for various integral operators we refer the reader to [3-6].

It is well known that the following continuous embeddings hold:
U s, 0<e<p-l.

Let f e L' (T) and

f(x)~a70+2(ak (f)cos kx + b, (£ )sin kx) (1)

o0
k=

be its Fourier series.

We denote by o’ ( f ,x) ( B> 0) and u,( f ,x) the Ceséaro and Abel-Poisson summability means, re-
spectively.

A weight function w is said to be of the Muckenhoupt class 4, (1 <p< oo) if

p-1
1 1 —y
sup m.[w(x)dx mj;w] P(x)dx| <o,

where the supremum is taken over all intervals whose length is less than 27.

Theorem 1. Let 1 < p <o and 0> 1. The following statements are equivalent:

i) There exists a positive constant ¢, >0 such that

suplof (f,x)| <l
n p)o W
for an arbitrary function f € Lfv)’e
ii) There exists a positive constant ¢, >0 such that Hsup u, (f,x)‘ o S6 Hf o

for an arbitrary function f € Lfv)’e

i) we 4, (T)
Note that an analogous statement is valid for more general means of the linear method of summability.
As has been mentioned above, the space L” Misa non-separable one. The closure of L” by the norm of

L does not coincide with the latter space.

We denote by L” " the closure of L” with respect to the norm of L” M As is known [7], L b ¥ isa

V

? of functions satisfying

lim P l\ S wlx)dx=0.

subspace of the space L”"

For functions from L 7" we obtain in a standard manner

Corollary. Let 1 < p <o and 0> 1. Let we 4, (T) Then for f el., 5),9 we have

lim o =0

n—x0

Gnﬁ(fa')_f
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and

lim =0.

n—

w(f.:)=f

0
)

Theorem 3. Let 1 < p <o and 0> 1. The mean continuity property fails to hold in the space " ie.

) such that

lim||f(-+h)—f(-)

h—0

there exists a function f €L’

#0 .

)90
Theorem 3 shows that in the space L’ it s impossible to define the moduli of smoothness by the

translation operator butin L ” " the moduli of smoothness can be introduced in the traditional way.

Here we employ the moduli of smoothness of fractional order. Assume that » >0. Let A” denote

n

CEYSIMIRIEY

k=0

which is the r-th order difference of the function f.

Here
r _r(r—l)---(r—k+l)
k) k!
for k>1, and
r
=0
"
for k=1.

For f eI:p)’g(T) we set

A ()

@, (fzé)LP)ﬂ = sup

Ih[<s A

and

E, (f)L{j,)ﬂ =inf "f_T””L”)'e )

where the infimum is taken over all trigonometric polynomials of degree not greater than ».

For a further presentation of our results we need the definition of power-logarithmic order derivative. Let
A, =n%1n” (n +1). Assume that o, y and 8 are some positive numbers. We say that a function f € e

I<p<ow, >0 and weAp(T),hasa (i,ﬁ) derivative f(}"ﬂ) if the series

:Z]Ak [ak (f)cosk[x+§—;:}+bk (f)sink(x+§—zn

is the Fourier series of function f 2

For the logarithmic-fractional order derivatives of periodic functions we refer to L.D.Kudryavtsev [8]
The following analog of the well-known Bernstein inequality is valid.
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Theorem 4. Let 1< p <o, 0> 1. Let we 4, (T) There exists a constant ¢ >0 such that

1), <eal]

.0
n Lﬁ,)

for an arbitrary trigonometric polynomial 7}, .
We emphasize the results of A.I.Stepanets [9,10], who proved the Bernstein type inequality in unweighted
classical Lebesque spaces for the derivatives in general sense.

o D)0 o D)0
Theorem 5. Let 1 < p <o and 0> 1. Assume that [ €L has a derivative f('l’ﬂ) eL . Then for

arbitrary > (0 we have

En(f)LP)ﬂ Sc%wr(f(l,ﬂ) 1 j

9
" n+1

with a positive constant ¢ independent of [ and n.

Theorem 6. Let 1 < p <o and 0> 1. Then for f €L PV and r >0 the inequality

1 S
o, [f,—j S KT () g
yida

h n" 45

holds with a positive constant ¢, independent of f and n.

Theorem 7. Let 1 < p <oo and 0> 1. Let the condition

0

A
D EE (f)po <o0
ok

. o P)0
be satisfied for a function f € L” . Then there exists f @h) e, and the inequality

1 I, - A
o, [f(’l’ﬂ)’_J ) < c[—rz/lk k"E, (f)po + Z TkEk—l (f)LPWJ
)’

n oS k=n-+1
holds with a constant c independent of f and n.

In the Lebesgue spaces L” (1 <p< 00) , results analogous to Theorems 5, 6 and 7 are presented in [11]
for the moduli of smoothness of k-th order (k eN ) .

Our next result concerns the rate of approximation by linear summability meansin L * .
Theorem 8. Let 1 < p <o and 0> 1. For f €L Y% and B >0 the inequality

1
B
- )—o L , Sew,| f,—
R o

holds for a positive constant c independent of [ and n.

A similar estimate holds for the deviation by the Abel-Poisson means.

The proof of Theorem 8 is based on the analog of the Marcinkiewicz multiplier theorem for Z”* (T).

Theorem 9. Let 1 < p <o and 0> 1, and let we A,,. Assume that f € L’;,)’g and its Fourier series is (1).
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Let the sequence (/ln)::() satisfy the conditions
2"
FRES N SRV AEVANES Y|
k:2n—l
for some M >0 and arbitrary neN.

Then the trigonometric series

% +Zw: 2, (a, cos nx+ b, sin nx)

n=1

is the Fourier series of some F € L! Y with a constant c independent of f and the inequality

HFHL”W < MchHL/))ﬁ

holds with a constant c independent of f.
In their further paper the authors intend to throw light on the approximation problems both in weighted
grand Lebesgue spaces and in multidimensional cases.
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