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ABSTRACT.  Motivated by the famous Maxwell conjecture on the number of equilibria of point
charges, we discuss the electrostatic potential of point charges placed at the vertices of polygonal linkage.
In particular, we establish that electrostatic potential is a Morse function on the moduli space of a
generic polygonal linkage, which yields estimates for the number of its equilibria. For quadrilateral
linkage, we present a number of results on the structure of electrostatic equilibria and, as a by-product,
prove that its shape is completely controllable by changing the charge at just one vertex.  © 2012 Bull.
Georg. Natl. Acad. Sci.
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1. The famous conjecture of J.C.Maxwell states that the number of equilibria of n equal point charges in R3

does not exceed (n –1)2 [1]. This conjecture remains unproven even for n=3 and the best established estimate
for n=3 is 12 [2]. Being classical and intriguing, this conjecture gained a lot of attention of researchers (see,
e.g., [2]). In particular, various modifications and special cases of Maxwell conjecture have been considered,
which led to a number of interesting mathematical results obtained by topological (see, e.g., [3]) and analyti-
cal methods (cf. [4]).

Along these lines, we suggest an analog of Maxwell conjecture in the context of polygonal linkages,
present several related results for linkages with a small number of vertices and discuss a few promising topics
naturally arising in the framework of our setting.  Our approach relies on the topological results on moduli
spaces of linkages [5] and signature formulae for the topological invariants of functions on moduli spaces [6].

2. Let us first recall some definitions and facts concerned with electrostatic potentials. By definition, the
electrostatic (Coulomb) potential of a system V of unit charges q=1 placed at the points vi є R3 is a rational
function on R3 defined by the formula V(P) =  (d(P,vi))

–1, where P є R3 and  d(P,vi) denotes the Euclidean
distance between P and vi. The electrostatic energy of V is defined by the formula  Es(V) =  (d(vi,vj))

–1 , where
the sum is taken over all pairs of nonequal indices.
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We will also consider the planar analog of G called planar electrostatic potential  which is defined for
a system V of unit charges placed at the points zi є R2  by the formula V(z)  =  Ln (d(z,zi)) , where Ln denotes
the natural logarithm and z є R2. The planar electrostatic energy of V is defined as Ep(V) =  Ln (d(zi, zj)),
where the sum is taken over all pairs of nonequal indices.

For a system V of points zi є R2  we also introduce a polynomial PV(z) =  (z – zi) having the points zi as its
zeroes.

Notice that the natural planar analog of Maxwell conjecture holds true in virtue of a classical observation
of C.Gauss. Indeed, Gauss showed that the critical points of V coincide with the zeroes of derivative (PV)’ of
polynomial  PV (cf. [4], Ch.1). This immediately yields the exact estimate for the number of equilibria of planar
electrostatic potential.

Fact 1. The number of critical points of planar electrostatic potential of n unit charges in the plane does
not exceed n – 1.

For n=3, using this observation of Gauss and a well-known theorem on zeroes of derivatives of cubic
polynomial ([4], Ch.1)  one obtains an explicit geometric description of equilibria of planar electrostatic
potential.

Fact  2.  The critical points of planar electrostatic potential of three unit charges placed at the vertices of
triangle   lie at the focuses of the ellipse tangent to the sides of  at their midpoints.

Such an ellipse always exists and is often called the Steiner ellipse of  [7]. It is known that it has the
maximal area among all ellipses contained in , which suggests that the equilibria of potentials might be
connected with certain extremal properties of arising configurations of equilibria. Both these facts serve as
paradigms for our considerations.

3.  We present now some definitions and facts concerned with polygonal linkages. Recall  that a polygo-
nal linkage (or a closed polygonal k-chain) L is defined by a k-tuple of positive numbers li called sidelengths
of L. In the case of a closed polygonal chain it is always assumed that each of the sidelengths is not greater
than the sum of all other ones [5]. A polygonal linkage is called regular if all sidelengths are equal. The planar
configuration space C(L) of a polygonal k-chain L is defined as the collection of all k-tuples of points vi  in
Euclidean plane such that the distance between vi and vi+1 is equal to li, where it is assumed that vk+1 = v1. Each
such collection of points is called a configuration  of  L. A configuration is called convex if the corresponding
polygon is convex. Factoring C(L) over the natural diagonal action of SO(2) one obtains the (planar) moduli
space M(L) = M2(L) [5]. The subset of M(L) formed by the convex configurations will be denoted Mc(L).
Analogously, one can define higher configuration spaces MN(L) of which we will only consider M3(L) and
denote it S(L). Moduli spaces, as well as configuration spaces, are endowed with natural topologies induced
by Euclidean metric.

It is easy to see that the planar moduli space can be identified with the subset of  configurations such that
v1 = (0,0), v2 = (l1,0).  It is well known that, for a closed k-chain, the moduli space has a natural structure of
compact orientable real-algebraic set of dimension  k – 3. Let us say that a polygonal linkage  is degenerate
if it has an aligned configuration, i.e., a configuration where all vertices lie on the same straight line. It is well
known that this happens if and only if there exists a k-tuple of “signs” si = ±1 such that  sili = 0. The moduli
spaces MN(L)  of polygonal linkage L is smooth (does not have singular points) if and only if L is nondegenerate
(see, e.g., [5]).
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4. We are now able to describe the settings discussed in the sequel. The main idea is to fix a polygonal
linkage L as above and consider Ep and Es as functions on the corresponding moduli spaces M(L) and S(L)
respectively. We present now a rigorous description of this setting in the case of quadrilateral linkage.

So let Q = Q(a, b, c, d) be a nondegenerate quadrilateral linkage with pairwise non-equal lengths of the
sides. For brevity, such a linkage will be called admissible. For each configuration V of Q, let us consider its
energies  Ep(V) and Es(V). Since Q does not have configurations with coinciding vertices, both these energies
are smooth (infinitely differentiable) functions on M(Q) and S(Q) respectively. So one may consider their
critical points in these moduli spaces  which in fact correspond to the physical equilibria of linkage Q subject
only to electrostatic forces between its vertices.

We can now formulate the two problems we are interested in: (P1) find the number of equilibria of Ep and
Es for a given linkage,  and (P2) find the maximal possible  number of equilibria of Ep and Es over the set of all
admissible quadrilateral linkages.

Notice a conceptual analogy of (P2) with Maxwell conjecture. However, an essential difference is that
here we consider the equilibria of the linkage itself and not the equilibria of its electrostatic potential in the
ambient space. In such a setting the problem acquires several new aspects, which lead to the following
results in the spirit of [6]. First of all, problem (P1) can be solved using our general approach based on
signature formulae for topological invariants [6].

Theorem 1.  For an admissible quadrilateral linkage Q, the number of equilibria of any of  energies Ep

and Es can be calculated as the signature of a quadratic form with the coefficients algebraically express-
ible through the sidelengths of Q.

Outline of the proof. The result follows by applying the signature formula for Euler characteristic to the
polynomial system for the equilibria obtained by the method of Lagrange multipliers. We give first an outline
of the proof  in the case of planar potential Ep.

The main idea in this case is to simplify the expression for Ep by considering the length of diagonals of
configuration V as coordinates on M(L). More precisely, we put x = d(v1, v3), y = d(v2, v4) and notice that the
pair (x,y) completely determines the shape of configuration V, i.e. its class in M(Q). In these coordinates one
has: Ep = x-1 + y-1 + C, where C is the constant equal to the sum of the terms corresponding to the sides of V.
Obviously, C has no influence on the critical points of Ep.

Now, from a classical result known as the Euler four points formula [7] follows that the moduli space M(Q)
is defined by the following polynomial equation in coordinates (x,y):

 x2y4 + y2x4 – (a2 + b2 + c2 + d2) x2y2 + (a2 - d2)(b2  - c2) x2 + (a2 – b2)(d2 – c2) y2 + C1 = 0, (*)

where C1 = (b2d2 – a2c2)(b2 + d2 – a2 – c2) is a constant.
Denoting by T the left hand side of this equation we see that point V is critical for Ep if and only if the

gradients of Ep  and T with respect to (x,y) coordinates are proportional at this point which gives another
polynomial equation T1 = 0. In this way we obtain a (2x2)-system of polynomial equations and it is easy to
verify that its jacobian is not identically equal to zero. This means that one can express the number of real
solutions to this system by the signature formula [6], which yields the desired result.

In case of Es the proof is in a sense easier since the lengths of diagonals (x,y) are independent local
coordinates on S(Q) in the interior of a certain box B = [xm, xM] x [ym, yM] defined by the regions of values of
x and y on S(Q). This follows from the existence of diagonal bendings [5] which change one of the diagonals
leaving the second one unchanged. So the equilibria are given by counting the zeroes of gradient Es inside
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the box B and checking the degenerate configurations of Q with extremal values of x or y.  Both these
procedures can be done effectively using signature formulae and the result follows.

The above considerations and methods used in [6], [8] enable one to show that the equilibria are in fact
nondegenerate in the sense of Morse theory.

Theorem 2.  For a generic admissible quadrilateral linkage Q, Ep and Es  are Morse functions on M(Q)
and S(Q) respectively.

The proof is obtained by analyzing the constrained extremal problem for the potential in question. To this
end we consider the extended Hessian matrix of Lagrange function in coordinates (x,y) introduced above.
Due to the simple form of  Ep and Es in these coordinates, the determinant of Hessian T2 can be computed
explicitly. We compute next  the resultant of polynomials T, T1, T2 and verify that it does not vanish identically,
which implies that the zeroes of the determinant  generically cannot coincide with the solutions to the
Lagrange system for equilibria.

Results of such kind are useful because they enable one to estimate the number of equilibria using Morse
inequalities and similar topological tools [3], [9]. For quadrilateral linkages, this is not indeed interesting since
both M(L) and S(L) have very simple topology but this idea may yield  a useful paradigm in the general case
of linkage with arbitrary number of sides n > 4.

After having found the polynomial system real solutions to which give the equilibria of potential in moduli
space one can try to describe the bifurcation diagram of this system in the space of parameters (a, b, c, d) and
find the number of equilibria in each component of its complement by the aforementioned signature formulas.
We were only able to do this for the planar potential Ep which yielded a solution to problem (P2) in this case.

Theorem 3.  For any admissible linkage Q, Ep has no more than 8 critical points on M(Q).
A detailed proof of this result will be published elsewhere. Analogous results for linkages with the number

of sides bigger than four would be difficult to prove by the same method since the arising polynomial systems
involve not less than three variables in which cases computers are usually unable to calculate the result using
signature formulae.

5. The above results on electrostatic equilibria of linkages have the following curious application in the
spirit of control theory. Consider an admissible quadrilateral linkage Q as above and place positive charges at
its vertices. Among the critical points of  Ep and Es the global minima are especially important since they give
the stable equilibria of the linkage subject to only electrostatic forces.

It is easy to see that the global minimum of Es can only be attained at a planar configuration of quadrilateral
Q. Indeed, for each nonplanar configuration one can increase the length of at least one of the diagonals
without changing another one which clearly decreases the value of Es. Thus in this context it is sufficient to
consider both potentials as functions on M(Q).

As is geometrically obvious and can be easily verified, given a non-convex planar configuration, one can
increase both of its diagonals simultaneously by deforming the linkage [7].  Thus the global minima of both
potentials always belong to Mc(Q). In fact, one can prove a stronger result.

Theorem 4. For an admissible quadrilateral linkage Q with arbitrary positive charges at its vertices,
the global minimum of Es on M(Q) is unique, and the same is true for Ep.

This result suggests the idea of controlling the shape of Q by changing the charge at one of the vertices
of Q. More precisely, we fix the positions of the first two vertices of Q, place unit positive charges at all
vertices except the first one placed at the origin, and permit ourselves to change the value q > 0 of charge at
the first vertex. By Theorem 4, for each q > 0 we have a single stable equilibrium of Es, i.e. a well-defined point
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in Mc(Q) which we denote by V(q). A natural question now is whether this mapping is surjective as a mapping
from R+  into Mc(Q). A positive answer to this question would mean that we may force the linkage to take any
convex shape from Mc(Q) by choosing a proper value of q.

Theorem 5. The mapping from R+  into Mc(Q) defined by sending q to V(q) is surjective on the interior of
Mc(Q).

Outline of the proof.  First of all, using Lagrange method it is easy to see that the configuration with the
lengths of diagonals equal to (xo, yo) is the global minimum of Es when the charge at the first vertex is equal to

q = (xo)
2 (yo)

-2 Tx (Ty)
-1, (**)

where the subscripts denote partial derivatives and both yo and Ty are non-zero.
If y0 = 0 one has an analogous relation with the roles of x and y exchanged. It only remains to show that

the obtained value of q is indeed positive. This can be proven by analyzing the implicit functions of the form
y(x) and x(y) obtained from equation (*). A simple argument  implies that in convex position both partial
derivatives have the same sign, which completes the proof.

Using the ideology and terminology of control theory [10] this result means that  convex configurations
of charged quadrilateral Q as above can be completely controlled by the value of charge at just one of its
vertices. The same result holds for Ep and its proof can be obtained by a slight modification of the relation (**)
in the above argument. In this context the result for Es is more important since in real life one always deals with
the Coulomb potential

It is now obvious that similar problems make sense for linkages with arbitrary number of sides. Discussion
of  arising generalizations and applications will be continued in forthcoming publications of the author.
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