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ABSTRACT. In the recent years in the world practice of calculation of the underground structures
numerical methods have almost displaced the analytical methods of continuum mechanics. While
numerical methods are indispensable for some intricate problems of geomechanics, the analytical methods
of the theory of elasticity for calculation of tunnels should be a subject of further use and development.
Parallel solution of specific problems with the use of one of the commercial computer software and
N.Muskhelishvili’s method of Theory of Elasticity was conducted. Using the example of tunnel of
rectangular cross-section, it was shown that the analytical solution can be more accurate and comparatively
easier over numeric especially using the well known program “Mathlab”. © 2013 Bull. Georg. Natl.
Acad. Sci.
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In the last 30s-40s, together with the develop-
ment of computer technologies numerical methods
of the mechanics of continua have evolved rapidly
and effectively. Thus it is frequently noted [1,2 etc.]
that the closed form solution is restricted to simple
geometries and material models, and therefore are
often of limited practical value and the solution is
considered to be a good tool for the assessment of
the results obtained from numerical analysis.

The market rate of computer programs for this
purpose is increasing. To solve problems of under-
ground structures some international companies have
also designed rather expensive special commercial
programs (“Rock science”, “Phase 2. 7”, “Examine”,
“Flac”, etc.). They are most effective for modeling

the so-called multiply-connected domains which oc-
cur, for example, in processing minerals when under-
ground excavations of different forms of cross-sec-
tion are located close to each other.

Analytical methods of the elasticity theory are
often forgotten even for less complex form of under-
ground structures, for which they are quite helpful
and often more accurate than numerical methods.
Today in the world practice of calculation of tunnels
use is often made of this  well-known analytical solu-
tion of the task of stress-deformed state around a
circular hole, made in 1898 by the German engineer
Kirsch (1898).

The most powerful technique for finding the
stresses and displacements around two-dimensional
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holes - methods of the theory of elasticity, devel-
oped by N. Muskhelishvili [2], is used relatively ra-
rely. Meantime the opportunity of this theory  for
modeling of practically any form  of tunnel cross-
section is recognized by  a number of authoritative
scientists [1,3,4 etc.]. It is considered that solution of
such tasks by analytical methods is difficult, because
full exploitation of this method requires knowledge
of the various integral theorems of complex analysis
[1]. If so, in order to facilitate the analytical solution
the same computer technologies, in particular the pro-
gram “Mathlab” could be used. This will greatly sim-
plify and make clear practical calculations with high
accuracy.

Radial r  and tangential   stress  and radial

rv  and tangential v  displacements for a single hole

of any form in  an infinite isotropic elastic medium
under plane strain conditions, are defined by
N.Muskhelishvili’s [2] known equations:
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where: E and v  are  Young’s module and  Poisson’ss
ratio of the massif.

    and      - analytical functions of the

complex variables ire   , that depend on  bound-

ary conditions;

    - function of conformal mapping for given

form of opening’s contour.
Schwarz–Christoffel function of conformal map-

ping  for contour of the single hole looks like:

   1 2 3 5 ... ,iR A B C D E            (4)

Values of the coefficients: R, A, B, C, D, E … des-
ignate the shape of the contour. For example, when
C=D=E=0, B=1 and A=(a-b)/(a+b), function (4) des-
ignates an ellipse with semiaxis a and b (Fig.1).

When mapping contour is of rectangular shape
with width - l and height –h (Fig.2), the coefficients
of (4)  will look like:

Fig. 1. Family of curves, mapping of elliptical cross-
section of tunnel.

Fig. 2. Family of curves, mapping of rectangular cross-
section of tunnel.
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where: 2k i -2k i -0.3a=e ; a=e ; k=0.25(n) ; n=1/h. 

Fig. 3 presents the given family of curves, map-
ping of arched cross-section of tunnels. For this case
the above-mentioned coefficients are: R=2; A=-1.8;
B=0.10; C=0.15; D=0.1; E=0.02; with their small
changes to get the needed form  using the “Mathlab”.

As an example, consider the problem of equilib-
rium of unevenly loaded infinite homogeneous, iso-
tropic plane with nearly rectangular hole (Fig.4) us-
ing analytical method and computer program
“Mathlab”.

The results will be compared with the numerical
solution of using the special program “phase 2.7”,
“Rocksciense”.

For a given base schema coefficients of confor-
mal mapping function (4) are: R=A=1; B=C=E=0;
D=1/6, and appropriate complex stress potentials [1]
can be written so:
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Substituting these meanings of functions (5), (6),
their derivatives and conjugates in the equations
(1)-(3), separating the real and imaginary parts, we

Fig. 3. Family of curves, mapping of arched cross-section
of tunnel.

Fig. 4. Nearly rectangular hole l/h=1, subjected to a far-
field vertical - P=10MPa and  horizontal - K*P=5
MPa stress.

Fig.5. Fields of the XX and YY elastic stress around the tunnel rectangular cross-section
according to  “Rockscience”, Phase2. 7".
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Fig. 6. Distribution of radial and tangential stress  on X
axis from contour to 5m, calculated using  analytical
and numerical methods.

Fig. 7. Distribution of radial and tangential stress  on Y
axis from contour to 5m, calculated using  analytical
and numerical methods.

shall receive components of stress and/or displace-
ments in any point of plane.  With this routine task

we will easily execute "Mathlab", an exemplary pro-
gram of which for our task is given in Table.

 Table. “Mathlab” exemplary program for calculation of stress around the tunnel rectangular cross-section

1.teta=pi/2; ro=0.2:0.01:1; x=1./ro; R=1; z=ro*exp(i*teta); 
2.om = R*(1./z-z.^3/6); omm= R*(-1./z.^2-z.^2/2);  
3.ommm=R*(2./z.^3-z); 
4.omsh = R*(1./ro*exp(i*teta)-0.1666*ro.^3*exp(-3*i*teta)); 
5.ommsh= R*(-1./ro.^2*exp(2*i*teta)-0.5*ro.^2*exp(-2*i*teta)); 
6.alfa=pi/2;  P=10; T=(3*cos(2*alfa)/7+i*3*sin(2*alfa)/5); 
7.fiP=P*R/4.*(1./z-0.166.*z.^3)+P*R*(T.*z+z.^3/12); 
8.fiiP=P*R/4.*(-1./z.^2-0.5.*z.^2)+P*R.*(T+z.^2/4); 
9.fiiiP=P*R/4.*(2./z.^3-z)+P*R/2.*z; 
10.ksiP=-P*R/2.*(1./z-0.166.*z.^3).*exp(-2*i*alfa)-   
     P*R/12.*(z.^3*exp(2*i*alfa)+(13.*z-26*T.*z.^3)./(2+z.^4)); 
11.ksiiP=-P*R/2.*(-1./z.^2-0.5.*z.^2).*exp(-2*i*alfa)-  
      P*R/12.*(3*z.^2*exp(2*i*alfa)+((13-78*T.*z.^2).*(2+z.^4)- 
     (13.*z-26*T.*z.^3).*4.*z.^3)./(2+z.^4).^2); 
12.alfa1=0;  K=5;  T1=(3*cos(2*alfa1)/7+i*3*sin(2*alfa1)/5); 
13.fiK=K*R/4.*(1./z-0.166.*z.^3)+K*R*(T1.*z+z.^3/12); 
14.fiiK=K*R/4.*(-1./z.^2-0.5.*z.^2)+K*R.*(T1+z.^2/4); 
15.fiiiK=K*R/4.*(2./z.^3-z)+K*R/2.*z; 
16.ksiK=-K*R/2.*(1./z-0.166.*z.^3).*exp(-2*i*alfa1)- 
     K*R/12.*(z.^3*exp(2*i*alfa1)+(13.*z-26*T1.*z.^3)./(2+z.^4)); 
17.ksiiK=-K*R/2.*(-1./z.^2-0.5.*z.^2).*exp(-2*i*alfa1)- 
     K*R/12.*(3*z.^2*exp(2*i*alfa1)+((13-78*T1.*z.^2).*(2+z.^4)- 
    (13.*z-26*T1.*z.^3).*4.*z.^3)./(2+z.^4).^2); 
18.FIK=fiiK./omm; FIIK=(fiiiK.*omm-fiiK.*ommm)./omm.^2; 19.KSIK=ksiiK./omm; 
20.FIP=fiiP./omm; FIIP=(fiiiP.*omm-fiiP.*ommm)./omm.^2; 21.KSIP=ksiiP./omm; 
22.FI=FIP+FIK;  FII=FIIP+FIIK;  KSI=KSIP+KSIK; 
23.M=2.*z.^2./(ro.^2.*ommsh); 
24.A = 4*real(FI);    B = real(M.*(omsh.*FII+omm.*KSI));    
25.Sr=(A-B)/2;  St=(A+B)/2;  
26.r=1+[0 0.17 0.35 0.52 0.70 … 3.16 3.34 3.51 3.69 3.86 4.00]; 
27.XX=[ 0.5605 3.18 5.10 5.75 … 5.35 5.31 5.27 5.24 5.22 5.19]; 
28.YY=[-0.0065 0.60 1.48 2.42 … 8.72 8.79 8.87 8.94 9.01 9.04]; 
29.plot(x,Sr,x,St,r,XX,r,YY);  grid on 
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Positions 27-29 of Table 1 represent the result of
numeric solution of the same task with the same
boundary conditions, solved by a numerical method
using the program “Phase 2.7”. They are imported
from  Fig. 5 using “Excel” embedded in the “Phase2.7”.

So, “Mathlab” gives  the superposed graphics of
analytic and numerical solution of the problem
(Fig. 6, Fig. 7):

Comparative analyses of the superposed graph-
ics of analytic and numerical solution of the problem
(Fig. 6, Fig. 7) allow us to make the following conclu-
sions:

1. Comparisons of calculation results of the stress
components around tunnels, obtained using: ana-
lytical method  based on the functions of complex
variable, and computer program  for geotechnic ob-

jects (“Rockscience”, Phase 2.7), based on finite ele-
ments method, significantly differ from each other.

2. If in the case of axisymmetric problems, consid-
ered in “Phase 2.7 Stress verification manual”, error
can be no more than 2-3%, then at the non-round holes
and irregular “in-situ far-field” stress,  such precision
can take place at only some points, for example on the
X axis (Fig. 6). At other places, for example on the Y
axis (Fig. 7), the quantative error is bigger.

3. Powerful methods of the theory of elasticity,
developed by N.Muskhelishvili for the solution of
problems of elastic stress-deformed state of massif
around tunnels of practically any form of cross-sec-
tion, make possible the solution much more precisely
and easily, especially using the computer program
“Mathlab”.

meqanika

arawriuli kveTis gvirabis irgvliv qanebis
masivis daZabul-deformirebuli mdgomareobis
SefasebisaTvis analizuri da ricxviTi meTodebis
Sedareba

l. jafariZe

akademiis wevri, g.wulukiZis samTo instituti. Tbilisi.

bolo 30-40 wlis ganmavlobaSi miwisqveSa nagebobebis gaangariSebis msoflio praqtikaSi
uwyveti tanis meqanikis analizuri meTodebi faqtiurad gandevna ricxviTma meTodebma.
Tu es ukanaskneli Seucvlelia geomeqanikis rTuli samganzomilebiani amocanebisaTvis,
brtyeli amocanebis SemTxvevebSi drekadobis Teoriis analizuri meTodebi kvlavac unda
darCes gamoyenebisa da ganviTarebis sagnad. Catarebulia miwisqveSa nagebobebis kerZo
amocanebis amoxsna. gamoyenebulia saerTaSoriso masStabiT gavrcelebuli sasrul
elementTa meTodze damyarebuli specialuri kompiuteruli programa da n.musxeliSvilis



Comparison of Analytical and Numerical Methods for Assessment ... 43

Bull. Georg. Natl. Acad. Sci., vol. 7, no. 1, 2013

drekadobis Teoriis analizuri aparati. ganivkveTis marTkuTxedTan miaxloebuli formis
gvirabis magaliTze miRebuli Sedegebis SedarebiTi analiziT naCvenebia, rom analizuri
amonaxsni ufro zustia amasTan advilic, Tu paralelurad gamoyenebuli iqneba
kompiuteruli programa ”maTlabi”.
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