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ABSTRACT. We discuss two seemingly unrelated topics having in fact a common feature that they
naturally lead to consideration of certain involutive transformations of biquadratic curves. The first topic
is concerned with the so-called Darboux transformation on the moduli space of planar quadrilateral
linkage. We explain how this transformation can be related to involutions of an appropriate biquadratic
curve and present a natural analog of Poncelet porism in this setting. The second topic is concerned with
the uniqueness of solution to the Dirichlet problem for string equation in bounded domain. If the boundary
is a convex biquadratic curve we show that an analog of Poncelet porism for the so-called John’s mapping
can be established in the same way as for Darboux transformation. © 2013 Bull. Georg. Natl. Acad. Sci.
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1. An interesting version of the famous Poncelet porism (big Poncelet theorem) [1] has recently been
obtained by J.Duistermaat in the context of biquadratic curves [2]. The general approach developed by
J.Duistermaat has a number of concrete implementations and applications, part of which can be found in [2].
In this note we discuss further aspects of the aforementioned version of Poncelet porism concerned with two
seemingly unrelated topics. The unifying element of our considerations is a certain transformation of
biquadratic curve naturally arising in each setting.

The first topic deals with the so-called Darboux transformation of moduli space of planar quadrilateral
linkage [2, 3], while the second one is concerned with the uniqueness of solution to the Dirichlet problem for
string equation in bounded domain investigated in [4-6].  Specifically, we obtain an analog of Poncelet porism
for quadrilateral linkages and show that, for a domain bounded by convex biquadratic curve, certain results
of [4] can be derived from the results of [2]. The uniqueness problem for string equation in domain bounded
by biquadratic curve has been discussed in [6] but without referring to [2]. We believe that the results of [2]
yield a unifying approach to both these topics which may suggest further developments concerned with
biquadratic curves.
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To provide a general background for our considerations let us recall that biquadratic curve X is defined by
a polynomial of the form  P(x,y) =  amn x

m yn, where the indices m, n in each monomial can only take values
0, 1, 2.  Recall also that a closed curve X  is called convex with respect to (x,y)-directions if each horizontal or
vertical line L which intersects X, either has two intersection points with X or has one tangency point with X.

Given a closed biquadratic curve with this property one can define two involutions of X called the
horizontal switch S1 and vertical switch S2 [2]. For each point p=(x,y) of X, consider the horizontal line passing
through p. By our condition it either touches X at p or has another intersection point p = (x, y). In the first
case we put S1(p) = p while in the second case we put  S1(p) = p. The vertical switch S2 is defined analogously
using vertical lines. It is obvious that both these mappings are involutions. Following [2] we also introduce
the so-called QRT-mapping on X defined as T = S1 S2. As is explained in [2], this mapping plays an important
role in many topics related to discrete integrable systems.

The mapping T is the main object of interest in the sequel. Specifically, we are interested in studying its
iterations Tn and periodic points. As was shown in [2], in this setting one has an analog of Poncelet porism for
QRT-mapping. Namely, the following dichotomy holds: either T has no periodic points in X or each point of
X  is periodic with the same period [2]. We are now aiming at discussing consequences of this general result
in the settings mentioned above.

2. In order to describe the first setting we need some definitions and results concerned with polygonal
linkages. Recall  that a polygonal linkage (or a closed polygonal k-chain) L is defined by a k-tuple of positive
numbers li called sidelengths of L. In the case of a closed polygonal chain it is always assumed that each of
the sidelengths is not greater than the sum of all other ones [7]. The planar configuration space C(L) of a
polygonal k-chain L is defined as the collection of all k-tuples of points vi in Euclidean plane such that the
distance between vi and vi+1 is equal to li, where it is assumed that vk+1 = v1. Each such collection of points is
called a configuration of  L. Factoring C(L) over the natural diagonal action of the orientation preserving
isometries one obtains the (planar) moduli space M(L) = M2(L) [7]. Moduli spaces, as well as configuration
spaces, are endowed with natural topologies induced by Euclidean metric.

It is obvious that the planar moduli space can be identified with the subset of  configurations such that v1

= (0,0), v2 = (l1,0).  It is also easy to see that, for a closed k-chain, the moduli space has a natural structure of
compact orientable real-algebraic set of dimension  k – 3. Let us say that a polygonal linkage  is degenerate
if it has an aligned configuration, i.e., a configuration where all vertices lie on the same straight line. It is well-
known that this happens if and only if there exists a k-tuple of “signs” si = ±1 such that  sili = 0. The moduli
space M(L)  of polygonal linkage L is smooth (does not have singular points) if and only if L is nondegenerate
(see, e.g., [7]).

In the sequel we only consider quadrilateral (4-bar) linkages. So let Q = Q(a, b, c, d) be a nondegenerate
quadrilateral linkage with pairwise non-equal lengths of the sides. For brevity, such a linkage will be called
admissible. For each configuration V of admissible linkage Q, both diagonals have non-vanishing length so
one can define the reflections R1(V) and R2(V) of V in the diagonal  v1v3 and v2v4 respectively. In this way we
obtain two involutions R1, R2 of the moduli space M(Q). Their composition T = R1R2 is called the Darboux
transformation of linkage Q [2].

A natural problem is to investigate the discrete dynamical system {Tn} on M(Q) generated by T.  The
approach of [2] enables one to obtain comprehensive results about the qualitative behaviour of the discrete
dynamical system {Tn} generated by T. One of the most spectacular results in this direction is an analog of
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Poncelet porism for a general biquadratic curve. As is mentioned on page 512 of [2], this result in the context
of quadrilateral linkages was discussed in a colloquium talk of the present author in Utrecht on 9.02.2006,
which gave an impetus for the study initiated by J.Duistermaat.

Later on, it turned out that a version of Poncelet porism for quadrilateral linkages had already been known
to G.Darboux. For this reason J.Duistermaat suggested to call T the Darboux transformation of a 4-bar
linkage Q. According to [2] the original proof of this result by G.Darboux used the theory of elliptic functions
and was rather involved. Below we present an outline of a simplified proof based on the approach of [2].

Along with M(Q) we will refer to its complex projectivization MC(Q) defined in a standard way by consid-
ering the equation of M(Q) in homogeneous coordinates [2]. It is known that both M(Q) and MC(Q) are
smooth (do not have singular points) if and only if the sidelengths satisfy the aforementioned non-degen-
eracy condition. This condition, traditionally called the Grashof condition, actually means that Q does not
have aligned configurations, or, equivalently, there do not exist numbers si = ±1 such that sili = 0. Now we
can formulate an analog of Poncelet porism for Darboux transformation of Q.

Theorem 1.  For an admissible 4-bar linkage Q, one has the following dichotomy: either each configu-
ration is periodic with the same period or the orbit of each configuration is infinite.

The idea of proof  borrowed from [2] is quite elegant: one shows that T can be realized as an automorphism
of the complexified planar moduli space MC(Q) acting as a translation, which makes the statement evident.
The following outline of the proof contains all essential ingredients of the argument.

Outline of proof of Theorem 1.   Let us use a rigid motion to place the first two vertices of Q=Q(a,b,c,d) at
points v1 = (0,0), v2 = (a,0) and consider an angular parametrization of M(Q) by putting  v3 = (a + b cos s, b sin
s), v4 = (d cos t, d sin t). Then using the “tangent of half-angle” substitution, the remaining distance condition
d(v3, v4) = c can be rewritten in the form

((a+b+d)2 – c2) u2 v2 + ((a+b-d)2 – c2))u2 + ((a-b+d)2 – c2)v2 + (-a+b+d)2 – c2 = 0.

The above curve in the (u,v)-plane is biquadratic and, as explained in [2], if it is smooth as a curve in the
Cartesian square of the complex projective line it is an elliptic curve. Since we assume that Q(l) satisfies the
Grashof condition, this curve is smooth and MC(Q) is indeed an elliptic curve. It is now easy to directly verify
that the Darboux transformation corresponds to the horizontal switch from (u,v) to (u,v) followed by the
vertical switch from (u,v) to (u,v) in the (u,v)-plane. Therefore the Darboux transformation T on M(Q)
coincides with the QRT-mapping  of the above biquadratic curve.  Then, as is shown in [2], the Darboux
transformation acts on it as translation. Since for a translation it’s obvious that it either has no periodic points
or all points are periodic with the same period, the result follows.

From our viewpoint it is remarkable that this result can also be proved using another biquadratic curve
naturally associated with linkage Q. This  is achieved by taking the lengths of diagonals of configuration V
as coordinates on M(L). More precisely, we put x = d(v1, v3), y = d(v2, v4) and notice that the pair (x,y)
completely determines the shape of configuration V, i.e. its class in M(Q).  Then an elementary classical result
known as Euler four points relation  [1] yields that the moduli space M(Q) is defined by the following
equation in coordinates (x,y):

 x2y4 + y2x4 – (a2 + b2 + c2 + d2) x2y2 + (a2 - d2)(b2  - c2) x2 + (a2 – b2)(d2 – c2) y2 + C1 = 0,

where C1 = (b2d2 – a2c2)(b2 + d2 – a2 – c2) is a constant. Taking the squares x2 and y2 as new variables, we obtain
another convex biquadratic curve. Since each diagonal involution does not change the length of one of the
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diagonals, they coincide with the horizontal and vertical shifts introduced above and so their composition
coincides with the Darboux transformation. Now the proof can be completed in the same way as above.

Our considerations and results of [3-7] enable one to obtain similar results for open 3-bar linkages (3-arms)
and spherical quadrilateral linkages. These generalizations will be discussed elsewhere.

3. Our second topic is concerned with the string equation  uxy = 0 considered in a bounded domain D. We
wish to study the uniqueness of solutions to Dirichlet problem {uxy = 0, u|C = f}, where f is a given continuous
function on the boundary C = b(D). Recall that results of F.John [4] and N.Vakhania [5] revealed some
interesting phenomena described in  terms of the geometry of boundary C and its position with respect to
characteristics of the string equation. Specifically, it appeared useful to investigate the periodic points of the
so-called characteristic billiard in D [4] and several interesting results have been obtained in this way [4-5].

In particular, for a rectangular D, the uniqueness of solution to homogeneous Dirichlet problem takes
place if and only if the ratio of the lengths of sides of D is irrational [4], [5]. Analogous results have been
obtained for ellipses [4]. In a more general setting where it is only assumed that the boundary C is convex with
respect to the family of characteristics of the string equation, F.John showed that the uniqueness problem is
related to the periodic points of a certain transformation of C called nowadays the John’s mapping J: C  C.
In particular, F.John formulated four alternatives in terms of the existence and cardinality of periodic points of
J and showed their relation to the uniqueness problem.

Recently, V.Burskii and A.Zhedanov investigated the case where the boundary C is a convex biquadratic
curve [6]. They showed that some of the alternatives suggested by F.John are impossible in this case and,
generically, there holds the dichotomy: either mapping J has no periodic points or all points are periodic with
the same period. In the first case one has uniqueness for the homogeneous Dirichlet problem while in the
second case the uniqueness fails and one can suggest an explicit geometric construction of nontrivial
solutions to the homogeneous Dirichlet problem [6]. Since in this case everything is determined by the
dynamical properties of J, which is a purely geometric object, it is not surprising that the same conclusion can
be derived using the general scheme of [2].

Namely, it is easy to verify that in this case the John’s mapping coincides with the QRT-mapping of the
corresponding biquadratic curve. Hence the dichotomy established in [6] becomes a direct consequence of
Poncelet porism for QRT mapping established in [2]. Combining this with the known results on the correct-
ness of the above Dirichlet problem we obtain the following criterion of uniqueness.

Theorem 2.  Let D be a domain bounded by a closed convex biquadratic curve C. Then the homogene-
ous Dirichlet problem {uxy = 0,  u|C = 0} has only trivial solution in the space of continuously differentiable
functions with square-integrable second derivatives if and only if the QRT-mapping of C has no periodic
points.

This criterion may be useful because the geometry of QRT-mapping is well-understood. In particular, a
criterion of periodicity and an algorithm for computing the period of QRT-mapping can be found in [2]. The
results in the case of elliptic boundary [4] become direct consequences of these general results. Moreover,
the criterion of periodicity of QRT-mapping given in [2] enables one to effectively check the uniqueness
property for any concrete biquadratic curve without assuming that the equation of C is given in a canonical
form as is assumed for similar considerations in [6]. Concrete examples will be given in a detailed version of
this paper.

4. We conclude by indicating a seemingly interesting research perspective suggested by the connections
described in this note. A natural problem in the context of Poncelet porism is to describe the deformations of
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a given biquadratic curve with periodic QRT-mapping which preserve the periodicity of QRT-mapping. Then
such a deformation preserves also the order (length of period) of QRT-mapping and for this reason we call it
isoperiodic deformation of biquadratic curve. An interesting example of description of isoperiodic deforma-
tions, which may serve as a paradigm for the general case, is given by poristic bicentric polygons [1].

Recall that a family of poristic bicentric polygons is defined by a pair of circles C, S such that C is inside
S. Let us assume that there exists a bicentric n-gon associated with the pair (C, S), i.e. an n-gon inscribed in
S and circumscribed about C. Then, by the big Poncelet theorem, there exists a one-dimensional family of
bicentric n-gons accociated with (C,S). These  n-gons are called poristic polygons associated with (C,S) and
the pair (C,S) is called a poristic pair of circles of order n (the original German term is “Kreise in Schliessungslage”
[1]). As is well-known, such a pair of circles defines a biquadratic curve X describing the Poncelet process [1]
and it can be checked that the number n coincides with the period of QRT-mapping for X [2].

Up to a rigid motion such a situation is described by a triple of positive numbers (R, r, d), R > r > d, where
R is the radius of external circle, r is the radius of internal circle, and d is the distance between the centers of
these circles. It is known that in order that pair (C,S) be a poristic pair of order n, the numbers R, r, d should
satisfy a certain algebraic relation. For example, for n=3, this is the Euler formula R2 – 2Rr = d2, and for n=4, this
is the so-called Fuss relation

2 2 2
1 1 1 .

( ) ( )R d R d r
 

 

For small values of n, it is known that these relations, called generalized Fuss relations, are in fact criteria,
i.e. they guarantee that a given pair of circles is poristic of order n.

Notice that this gives a description of isoperiodic deformations of the biquadratic curve X=X(R,r,d).
Namely, it is now obvious that we obtain a two-dimensional family of isoperiodic deformations of  X described
by the condition that parameters R,r,d satisfy a generalized Fuss relation. It is not difficult to rewrite these
relations in terms of the coefficients of biquadratic curve  X(R,r,d) and obtain an explicit description of its
isoperiodic deformations. Examples of such descriptions will be given in a detailed version of this paper.

Now, by a way of analogy it would be interesting to find a similar description of isoperiodic deformations
for a general biquadratic curve with periodic QRT-mapping and, in particular, find out what is the dimension
of the set of isoperiodic deformations.
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maTematika

ponseles porizmi bikvadratuli wirebisTvis

g.ximSiaSvili

ilias saxelmwifo universiteti, fundamenturi da interdisciplinuri maTematikuri kvlevis
instituti, Tbilisi

(warmodgenilia akademikos n. vaxanias mier)

naSromSi ganxilulia ponseles porizmi bikvadratuli wirebisTvis da moyvanilia am
porizmis analogebi saxsruli oTxkuTxedis darbus gardaqmnis SemTxvevaSi  da simis
gantolebis maxasiaTebeli biliardis SemTxvevaSi.
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