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Derivation of the main equation

Motion of the fluid can be described both from axi-
omatic and phenomenological points of view. Axi-
omatic approach is a purely mathematical approach
which gives the possibility to solve only a narrow
part of practical problems. Phenomenological ap-
proach is a purely pragmatic approach enabling to
approximately solve detailed practical engineering
problems.

In the present paper prevalence is given to the
phenomenological approach in which some assump-
tions are often of intuitive character and not based
on strict mathematical and physical postulates. At
this approach sometimes the assumptions seem to
be opposite at first sight are admitted for considera-
tion of different problems, which is done for estab-
lishment of a concrete target in solution of hydraulic
problems. For illustration of this assumption it is

enough to refer to the cases of description of the

motion of hyperconcentrated (structural) debris flow,
when attempts to combine as if opposite positions in
relation to “solid” and “fluid” (viscous) bodies (mo-
tion of the quasi-solid body) are made. Such an as-
sumption about motion of non-Newtonian bodies
leads us to not strict (approximate) definition ofthese
concepts which is not very important for engineers.
However, it is important that the approach success-
fully works from the point of practical estimations.
Conception about “solid” body implies that the
value of deformation depends on the value of acting
force, whereas the conception of “viscous” body of
the value of deformation depends on the velocity of
deformation. In the former case a body saves its pri-
mary form, while in the latter case the body does not
possess or possesses this property partially. Despite
the contradiction, from practical point of view in

phenomenological approach the study of the prob-
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Fig. 1. Scheme of distribution of velocities and tangent stresses in pressureless uniform flow of Newtonian fluid.

lems of dynamics of non-Newtonian fluids including
debris flows, as if incompatible, seems to be possi-
ble.

In the given case the main attention is focused
on the fact that fluid “sticks” to the wall of the river-
bed as a result of which at contact surface of the flow
with the bed the gradient of velocity is observed.

In the present work there is an attempt to express
discharge of pressureless uniform motion of both
Newtonian and non-Newtonian fluids with the help
of the model O=f(1) ,where Q is fluid discharge, 7 -
tangent stress. Determination of the dependences
between parameters describing phenomenon finally
is the construction of the model. Universal models
are considered to be the laws.

Method of expression of discharge via elasticity
can be found in [1-3]. Inserting into dependence
O=f(7) concrete values f{t) and integrating the ob-
tained equation with account of boundary conditions
the dependence for definition of fluid discharge with
different rheological characteristics can be received.

The existing dependences of theological charac-
ter, which connect velocity gradient with shift stress,
are divided into two groups. The first group implies
the so-called “stationary fluids” From the rheological
point of view these are fluids for which shift velocity
depends only on the value of tangent stress. The
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second group implies “non-stationary fluids”. These
are fluids in which shift velocity is the function both
of value of the tangent stress and time, i.e. duration
of the force action on the body.

The present paper implies only the first group,
i.e. the group of rheological “stationary fluids”, which
are divided into Newtonian and non-Newtonian flu-
ids.

Discharge of the pressureless uniform motion
flow with full depth A and under condition of “stick-
ing” of the fluid on the wall of the riverbed can be

determined by the dependence:
0
Q=B ydu, (1)
H

where B is the width of the riverbed with straight
angle longitudinal cross-section; u — local velocity
of the flow.

Fig.1 presents distribution schemes of the veloc-
ity and tangent stresses in pressureless uniform flow.
If 7, is tangent stress on the bottom of the flow (i.e.
at the contact surface of the flow and riverbed), then
according to the condition of equilibrium of acting
forces and with account of boundary condition we
shall have:

T="i, @
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T, =vHi, &)
where y is specific weight of uniform fluid,

i=sin@ - riverbed bottom gradient or

Y
=71, . 4
- @

L d .
Taking into account that au_ l, where L is

dy
. . . . du
dynamic coefficient of viscosity, i.e. r» = f(1),
'y
therefore
du=f(7)dy. o)
Out of (4) it follows
y= iH ©)
TL‘
H
or dy=—dr.
T

Taking into account (5),(6) and (7) dependence
(1) will be as follows:

20

Q:Blj—jrf(r)dr. ®)

Expression (8) allows to determine discharge of
the fluid at pressureless motion of the established
uniform flow. Inserting concrete values of f{t) into (8)
we can obtain corresponding values of the fluid dis-
charge with different rheological characteristics.

Determination of the fluid discharge of
Newtonian fluids

At laminar regime of the motion of Newtonian fluid

du T
f@=F=-=
dy
If we insert this expression into dependence (8)
we shall get:
H2 0 BHZ
0=-8M [ eqi= Bl
T Y 3u

Taking into account (3) we shall have
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Here v =~ iskinematic coefficient of viscousity,
p

W - dynamic coefficient of viscousity, p = x. den-
g
sity of uniform fluid, g - acceleration of free fall.

Designate ¢ =% as discharge per one linear

metre of the width, then

gH’i ,

=5y ©)

The obtained dependences (9), (9°) are well

known for characteristics of laminar motion of
Newtonian fluid [4].

Determination of the fluid discharge of
non-Newtonian fluids

a) Shvedov-Bingham model
Let us take into consideration that according to
Shvedov-Bingham

du
TS H (10)

where 1, is dynamic stress of the shift, in fact it
expresses stress at the depth / (Fig.2), & — depth of
the flow core (“structural part of the flow), i.e. depth
of the flow from free surface up to gradient layer (it is
determined according to the presented method in [5]).
If“static” stress of the shift characterizes shift value
at the moment of the beginning of the motion of the
system, then “dynamic” stress of the shift is a condi-
tional concept and expresses constant part of full
tangent stress (not depending on velocity) during
the motion.
Then
du 1,-7

Loho .
W

& (11)

With account of (11) dependence (8) will be:
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Fig. 2. Scheme of distribution of velocities and tangent stresses in pressureless uniform flow of non-Newtonian fluid.
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Taking into account (3) we get:

3.
Q:Bng[2— 310} 1)
6v pgHi

In the case when t,= 0 dependence (12) coin-
cides with (9).
From dependence (12) it follows that such a lig-

uid will start motion under condition

3,

pgHi

2>
ie.
2

Ty < ETE (13)

as T,= vhi at the presence of flow core the fluid be-

gin the motion when
2
h< EH . (14)

Considering the given model, it is advisable to do
the integration in the boundaries of gradient layer,
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and not along the whole depth of the flow as the
velocity in the core is constant.

Then we shall have:

H? Tt(t, -1
0=B— (O—)dr
.1 M
or after integration with account of 7, =y Hi and
7, =yhi we get
_ BgiH }
A%

0 1P, (15)

where

p

2 1 3
JB=Z® —1)+§(1—l3 ), (16)

where f3 = % isrelative depth.

Out of the received dependences it follows that
the motion of hyperconcentrated by alluvia flow (co-
hesive, structural) is provided by erosion incision,

inset under condition

E ]_i >£ ]_i
3 H) 2 H*? an

or at
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h<0.9H. a7)

If we designate the condition via Q, and Q,,,
hence the discharges of Newtonian and non-New-
tonian fluids (with corresponding coefficients of kin-

ematic viscosities) after (9) and (15) we get
0,,=30,/) (18)
In the case of /=0, =0, from (16) we get {B)=1/3
and we have 0=0,=0, .

Model of De Vale-Ostvald

For evalution of tangent stress the model assumes

the dependence:

(19)

where k is measure of the mixture consistence (the
more viscosity is, the more is k), n — index of non-
Newtonian behavior.

When n=1, then k= and we get the Newtonian
fluid. In the case of n<1 with the increase of gradient
velocity the decrease of so-called “effective” vis-

Jogﬁmg)ma 09

cosity occurs. “Effective” viscosity seems to be the
viscosity creating the impression as if we deal with
plastic medium. Such bodies are called “pseudo-
plastic” [3].

When » >1 with the increase of gradient velocity
the increase of “effective” viscosity occurs. In such
cases these fluids are called dilatant [3].

In the considered case

1

du T\
)=—=—|— 20
r0=%-—(1] 20
Taking into account (20) dependence (8) after in-
tegration with account of boundary conditions will

be as follows:
~ Bp%g%i%[‘]2+%

AT

Atn=1and k=p we get (9), i.e. expression for

o2y

determination of discharge of Newtonian fluid.
Analogous transformations can be used for
deterfmination of fluid bodies with excellent rheolo-

gical indices [2,3].

503@0‘)5360 o oﬁbso‘aémsﬁﬁo lsombaabolsmaols
Boﬁxol& 3.)515.)15;33601& ao%mabgabaggo 3:]me0 6o doQo'ls
00bsd3M0 Mggodom dmdMmsmdobsl

™. 5.)0)0'33091\70

JJJQJHOJMZJO, Z}Jj‘)rﬁm&?g)mls 3(7650(76(7(3301& Jﬁﬂggggm o(;o,nggoo, m&o@obo

g330bsgrto B940d0L JoMHmdgdobsmgzol 036383610 PRI BIm dmdHImBol Esbsbsbosogdmage
'838(")0)\)30%3&2'&00 'b.)ﬁ:xo’ls a\)s’lb\)%maé)ol) aos%maoQabaQo aamQO 6(")6(")60 50'86(")5'860, 015333

.)6.)503@005-860 Bomb{n&o’l}m:jo’l}.

Bull. Georg. Natl. Acad. Sci., vol. 7, no. 2, 2013



Generalized Method of Assessment ... 129

REFERENCES

1. O.G Natishvili, V1. Tevzadze (2001), Dvizhenie selei i ikh vzaimodeistvie s sooruzheniiami. Tbilisi, 148 p. (in
Russian).

2. J. Astarita, J. Marucci (1978), Osnovy gidromekhaniki neniutonovskikh zhidkostei. M., 309 p. (in Russian).
Foundations of Hydromechanics of Non-Newtonian Liquids

3. U.L. Wilkinson (1964), Neniutonovskie zhidkosti, M., 216 p. (in Russian).

. D.V. Shterenlikht (1984), Gidravlika. M., 640 p. (in Russian).

5. O.G. Natishvili, V.I. Tevzadze (2011), Gidrotekhnicheskoe stroitel’stvo, 12: 57-59 (in Russian).

~

Received April, 2013

Bull. Georg. Natl. Acad. Sci., vol. 7, no. 2, 2013





