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ABSTRACT. We discuss analogs of the famous Maxwell conjecture on the number of equilibria of
point charges in certain situations where the positions of charges are subject to quadratic constraints.
Two types of quadratic constraints are considered in some detail: point charges placed at the vertices of
polygonal linkage, and point charges confined to a circle. We show that the Coulomb potential in both
cases is a Morse function on the corresponding moduli space and present several results on the number
and Morse indices of its critical points. Detailed results are obtained if the number of charges does not
exceed four. For quadrilateral linkage, we establish that the number of equilibria does not exceed eight.
As a by-product, we show that any convex configuration of such a linkage is an equilibrium of Coulomb
potential for some collection of charges at the vertices. For three charges on the circle, we give a
geometric characterization of configurations which are equilibria of Coulomb potential for some collection
of charges. © 2013 Bull. Georg. Natl. Acad. Sci

Key words: point charge, Coulomb potential, equilibrium, polygonal linkage, configuration space, moduli
space, Morse function, critical point.

1. Equilibrium configurations of point charges with Coulomb interaction have been extensively discussed
as models of real physical systems [1, 2], and in connection with the famous Maxwell conjecture [3, 4]. As was
recently realized by the author, this paradigm leads to interesting developments in the setting where the
charges are placed at the vertices of polygonal linkage [5]. Similar situations where the positions of charges
are subject to certain geometric or analytic constraints were discussed in [1, 2].

Motivated by these developments, we study the equilibria of point charges subject to certain quadratic
constraints, which generalizes the settings of [2] and [5]. A characteristic feature of our approach is that we
consider Coulomb potential as a function on the moduli space naturally associated with the constraints
considered. An important circumstance is that, for quadratic constraints, the topology of the moduli space
can be effectively investigated using the methods of [6], which yields considerable information on the critical
points of Coulomb potential.

Another peculiarity of the point of view accepted in this note is that we apply our results to the problem
of controlling the shape of charged configuration by the values of charges. This is conceptually close to the
setting of necklaces with interacting beads discussed in [2] but the problem of shape control has not been
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discussed in [2]. An impetus for considering this problem was given by some recent research on the dynam-
ics of nano-systems presented in  [7].

Recall that the famous conjecture of J.C.Maxwell states that the number of Coulomb equilibria of n point
charges in generic position in R3 does not exceed (n - 1)2 [1]. This conjecture remains unproven even for n=3
and the best established estimate for n=3 is 12 [2]. Being classical and intriguing, this conjecture gained a lot
of attention of researchers [2]. In particular, various modifications and special cases of Maxwell conjecture
have been considered, which led to a number of interesting mathematical results obtained by topological [3]
and analytical methods (cf. [4]).

Along these lines, we consider systems of points with quadratic constraints, give a few natural examples
of such systems and discuss analogs of Maxwell conjecture in this context. We illustrate this setting by
considering vertex-charged polygonal linkages and point charges on the circle, present several related
results for linkages with small number of vertices and discuss a few promising topics naturally arising in the
framework of our setting.  Our approach relies on the topological results on intersections of quadrics [6] and
signature formulae for the topological invariants of functions on moduli spaces [8].

2. We begin with describing the definitions and the main paradigm. Recall that the Coulomb potential of
a system V of unit charges qi placed at the points vi є R3 is a rational function on R3 defined by the formula
ΨV(P) = Σ q­i (d(P,vi))

-1, where P є R3 and d(P,vi) denotes the Euclidean distance between P and vi. The
electrostatic energy of V is defined as  Es(V) = Σ qiqj (d(vi,vj))

-1 , where the sum is taken over all pairs of
nonequal indices.

Consider now the collection S(N, G)  of all N-tuples of  points vi є R3 such that their coordinates satisfy a
set of quadratic equations G. In such a situation we will speak of system of points with quadratic constraints
(SPQC).  Factoring S(N, G) by the diagonal action of the group of orientation preserving isometries of R3 we
obtain the moduli space M(N,G) of the given SPQC.

We now wish to consider the system S(Q, G)  of point charges qi placed at the points of a SPQC and call
it a system of charges with quadratic constraints (SCQC). In this situation, the electrostatic energy of SCQC
naturally defines a rational function EQ : M(N,G) ’ R on the moduli space M(N, G), which is the main object
of our interest in this paper. In particular, the minima of electrostatic energy correspond to equilibria of a
system of point charges satisfying the given quadratic constraints.

It appears also useful to consider all critical points of this function. Then an analog of the aforementioned
Maxwell problem can be formulated as the search for an exact upper bound for the number of critical points
of EQ in M(N, G) valid for all systems of charges Q. An important circumstance is that one can effectively
compute the homology groups of the moduli space M(N,G) using the methods of [6]. It turns out that
generically EQ is a Morse function on M(N,G) and so one can obtain certain information on its critical points
from the homology groups of M(N,G). This is the main paradigm for the considerations presented in the
sequel.

This paradigm is obviously applicable to a number of well-known settings such as the moduli space of
polygonal linkage [5], point charges on a circle [1, 2], configuration space of N points on an ellipse, confor-
mation spaces of certain organic molecules, families of poristic bicentric polygons [9] and many more.

To illustrate our approach we discuss in some detail the situation where point charges are placed at the
vertices of polygonal linkage which was studied in [5].

3. Recall that a polygonal linkage L is defined by a k-tuple of positive numbers li called sidelengths of L.
In the case of a closed polygonal linkage it is always assumed that each of the sidelengths is not greater than
the sum of all other ones. A polygonal linkage is called regular if all sidelengths are equal. The planar
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configuration space C(L) of a polygonal k-chain L is defined as the collection of all k-tuples of points vi  in
Euclidean plane such that the distance between vi and vi+1 is equal to li, where it is assumed that vk+1 = v1. Each
such collection of points is called a configuration of L. Since the distance condition is quadratic,  a polygonal
linkage gives an example of SPQC.

A configuration is called convex if the corresponding polygon is convex. Factoring C(L) over the natural
diagonal action of SO(2) one obtains the (planar) moduli space M(L). A subset of M(L) formed by the
convex configurations will be denoted by Mc(L). Moduli spaces, as well as configuration spaces, are en-
dowed with the natural topologies induced by Euclidean metric.

It is easy to see that the planar moduli space can be identified with the subset of  configurations such that
v1 = (0,0), v2 = (l1,0).  It is well known that, for a closed k-chain, the moduli space has a natural structure of
compact orientable real-algebraic set of dimension  k – 3. Let us say that a polygonal linkage  is degenerate
if it has an aligned configuration, i.e., a configuration where all vertices lie on the same straight line. It is
well known that this happens if and only if there exists a k-tuple of “signs” si = ±1 such that Σ sili = 0. The
moduli spaces M(L)  of polygonal linkage L are smooth (do not have singular points) if and only if L is
nondegenerate [8].

According to our paradigm, we fix a polygonal linkage L and system of charges Q and consider EQ as a
function on the moduli space M(L). In this paper, we  only deal with the case of quadrilateral linkage.

So let L = L (a, b, c, d) be a nondegenerate quadrilateral linkage with pairwise non-equal lengths of the
sides. For brevity, such a linkage will be called admissible. For each configuration V of L, and a system of
charges Q, let us consider its Coulomb energy EQ(V). Since L does not have configurations with coinciding
vertices,  EQ is a smooth (infinitely differentiable) function on M(L). So one may consider its critical points
which in fact correspond to the equilibria of Q-charged linkage L subject only to electrostatic forces be-
tween its vertices.

In this setting, one may wish to investigate three natural problems arising as generalizations of  the two
problems formulated in [5]: (P1) for a given admissible linkage L and system of charges Q, find the number of
equilibria of EQ in M(L);  (P2) for a given admissible linkage L, find the maximal possible  number of equilibria
of EQ over the set all charges Q; (P3) find the maximal possible  number of equilibria of EQ over the set of all
admissible quadrilateral linkages L and all charges Q.

These problems obviously have many modifications. For example, in certain situations it is natural to
consider only system of charges of the same sign or just a system of equal charges.

Notice a conceptual analogy of (P3) in the case of equal charges with the Maxwell conjecture [3]. How-
ever, an essential difference is that here we consider the equilibria of the linkage itself and not the equilibria
of its Coulomb potential in the ambient space. In such a setting, the problem acquires several new aspects,
which lead to the following results in the spirit of [8]. First of all, problem (P1) can be solved using our general
approach based on signature formulae for topological invariants [8] which generalizes a similar result given
in [5].

Theorem 1.  For an admissible quadrilateral linkage L and system of charges Q, the number of equilibria
of EQ can be calculated as the signature of a quadratic form with the coefficients algebraically expressible
through the sidelengths of L and values of charges.

In fact, the same result holds for many classes of SCQC satisfying some mild conditions of genericity
(transversality), in particular, for linkages with an arbitrary number of sides. All these results follow by
applying the signature formula for the Euler characteristic to EQ and the polynomial system for the equilibria
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of SCQC obtained by the method of Lagrange multipliers. Indeed, equilibria correspond to the real solutions
to the arising Lagrange system which can be counted by the signature formula from [8]. However, a rigorous
formulation of the general result requires more concepts and space so it is postponed for future publications.

Using the methods of [8] one can also show that, generically, all equilibria are in fact nondegenerate in the
sense of Morse theory.

Theorem 2.  For a generic admissible quadrilateral linkage L and system of charges, EQ  is a Morse
function on M(L).

The proof is obtained by analyzing the constrained optimization problem for the Coulomb potential. To
this end we take the lengths (x,y) of diagonals of configuration as coordinates on M(L) and consider the
extended Hessian matrix of Lagrange function in these coordinates. Due to the simple form of EQ in these
coordinates, the determinant of extended Hessian can be computed explicitly, which yields the result.

There is good evidence that an analogous result holds for linkages with an arbitrary number of sides and,
more generally, for wide classes of SPQC. However, the method outlined above is not realistic in the general
case, so one should think of a proof based on transversality theorems.

Results of such kind are useful because they enable one to estimate the number of equilibria using Morse
inequalities and similar topological tools [6]. For quadrilateral linkages, this is not too interesting since M(L)
has very simple topology, but this observation may be helpful in the general setting of SCQC since  the
topology of their moduli spaces can be described using the methods of [6].

After having found the polynomial system real solutions to which give the equilibria of potential in the
moduli space, one can compute the bifurcation diagram of this system in the space of all parameters (sidelengths
and charges) and find the number of equilibria in each component of its complement by the aforementioned
signature formula. Realizing this program for quadrilateral linkages we arrive at the following result general-
izing a similar result from [5].

Theorem 3.  For any admissible linkage L and system of charges Q, EQ has no more than eight critical
points on M(L).

This result may be considered as the first step towards proving the analog of Maxwell conjecture in the
setting of polygonal linkages [3].

4. The above results on electrostatic equilibria of linkages have the following curious application in the
spirit of control theory which can hopefully serve as a paradigm for similar developments in the context of
general systems of charges with quadratic constraints. Consider an admissible quadrilateral linkage L as
above and place a system Q of positive charges at its vertices. Among the critical points of  EQ the global
minima are especially important since they give the stable equilibria of the linkage subject to only electro-
static forces.

As is geometrically obvious and can be easily verified, given a non-convex planar configuration one can
increase both of its diagonals simultaneously by deforming the linkage. Thus the global minima of Coulomb
potential always belong to Mc(L). In fact, one has the following two results which have been proven jointly
with G.Panina and D.Siersma.

Theorem 4. For an admissible quadrilateral linkage L with arbitrary positive charges at its vertices,
the global minimum of EQ on M(L) is unique.

This result suggests the idea of controlling the shape of L by changing the charge at one of the vertices
of L. More precisely, we fix the positions of the first two vertices of L, place unit positive charges at all vertices
except the first one placed at the origin, and permit ourselves to change the value q > 0 of charge at the first
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vertex. By Theorem 4, for each q > 0 we have a single stable equilibrium of EQ, i.e. a well-defined point in Mc(Q)
which we denote by V(q). A natural question now is whether this mapping is surjective as a mapping from R+

into Mc(L). A positive answer to this question would mean that we may force the linkage to take any convex
shape from Mc(L) by choosing a proper value of q.

Theorem 5.  For an admissible quadrilateral linkage L, the mapping from R+  into Mc(L) defined by
sending q to V(q) is surjective on the interior of Mc(L).

Outline of the proof.  First of all, using Lagrange method it is easy to see that the configuration with the
lengths of diagonals equal to (xo, yo) is the global minimum of Es when the charge at the first vertex is equal to
q=(xo)

2(yo)
-2Tx(Ty)

-1, where the subscripts denote partial derivatives and both yo and Ty are non-zero. If Ty = 0
one uses an analogous relation with the roles of x and y exchanged (notice that the lengths of both diagonals
are nonzero for an admissible linkage). It only remains to show that the obtained value of q is indeed positive.
This can be proven by analyzing the implicit functions of the form y(x) and x(y) obtained from the Euler four
point relation (see, e.g., [5]). A simple argument implies that, for a convex configuration, both partial deriva-
tives have the same sign, which completes the proof.

This result means that convex configurations of charged quadrilateral Q as above can be completely
controlled by the value of charge at just one of its vertices. Similar problems obviously make sense for
linkages with an arbitrary number of sides and in the context of SPQC described above. However, their
investigation appeared rather difficult already for pentagons.

5. In conclusion we briefly discuss similar topics in the situation where the charges are confined to stay
on the unit circle, which is obviously another example of SCQC. For physical reasons, in this situation it is
reasonable to consider charges of the same sign.

Consider first the case of three positive charges. It is easy to see that each configuration V which is an
equilibrium for a certain system of three positive charges, has the following geometric property: the diameter
passing through each charge separates the two remaining charges. For brevity, let us call it separation
property. In fact, it is easy to show that, for three charges, this property is a criterion.

Theorem 6. A configuration V of three points on the unit circle is an equilibrium of three positive
charges placed at these points if and only if V has the separation property.

We were unable to prove that the separation condition is sufficient if there are more than three  charges.
However, it seems very likely that an analogous criterion is valid for any number of positive charges on the
circle. It would be also interesting to investigate the case of three charges on an ellipse which fits into the
same paradigm.

In conclusion we add that analogs of the above results and conjectures make sense for general systems
of points with quadratic constraints. The author intends to continue the study of these problems in the spirit
of the paradigm described above.
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maTematika

SezRudvebis mqone wertilovani muxtebis
wonasworobebi

g.ximSiaSvili

ilias saxelmwifo universiteti, fundamenturi da interdisciplinuri maTematikuri kvlevis
instituti, Tbilisi

(wardgenilia akademikos r. gamyreliZis mier)

naSromSi ganxilulia maqsvelis cnobili hipoTezis analogebi kvadratuli SezRudvebis
mqone wertilovani muxtebis SemTxvevaSi. ufro detalurad ganxilulia ori tipis
SezRudvebi: wertilovani muxtebi saxsruli mravalkuTxedis wveroebSi da wertilovani
muxtebi wrewirze. dadgenilia, rom am SemTxvevebSi kulonis potenciali gansazRvravs
morsis funqcias konfiguraciul sivrceze da moyvanilia ramdenime Sedegi am funqciis
kritikul wertilTa raodenobis da morsis indeqsebis Sesaxeb. sakmaod detaluri Sedegebi
miRebulia im SemTxvevaSi, rodesac muxtebis raodenoba ar aRemateba oTxs. kerZod,
naCvenebia, rom saxsruli oTxkuTxedisTvis wonasworobebis raodenoba ar aRemateba rvas
da aseTi oTxkuTxedis nebismieri amozneqili konfiguracia miiReba rogorc misi damuxtuli
wveroebis wonasworoba. analogiuri Sedegi miRebulia sami muxtisTvis wrewirze.
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