Mathematics

Note on Abel-Poisson Means of Trigonometric Fourier Series

Dali Makharadze

Faculty of Education and Sciences, Shota Rustaveli State University, Batumi
(Presented by Academy Member Vakhtang Kokilashvili)

Abstract

Some approximative properties of the Abel-Poisson means of trigonometric Fourier series are established. For summable functions we establish the order of deviation at certain points by above-mentioned summation means. We prove that at points, in which the indefinite integral of modulus of second order difference is estimated by the product of modulus continuity function and upper bounds of indefinite integral, it is possible to get optimal estimate. In the paper alongside with the pointwise estimate the uniform summation order is established. © 2013 Bull. Georg. Natl. Acad. Sci.

Key words: Abel-Poisson means, trigonometric Fourier series .

Let us assume that $T=[-\pi, \pi]$ and the functions $f: R \rightarrow R$ are periodic with period 2π, where $R=]-\infty ; \infty[$.For a function $f \in L \mathbf{(T)}$ by $\sigma[f]$ denote the trigonometric Fourier series of f, i.e.,

$$
\sigma[f]=\frac{a_{0}}{2}+\sum_{\mathrm{k}=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x
$$

where

$$
\begin{aligned}
& a_{k} \equiv a_{k}(f)=\frac{1}{\pi} \int_{T} f(t) \cos k t d t, \\
& b_{k} \equiv b_{k}(f)=\frac{1}{\pi} \int_{T} f(t) \sin k t d t .
\end{aligned}
$$

By $f(x, r)$ denote Abel-Poisson means of the series $\sigma[f]$, namely:

$$
\begin{equation*}
f(x, r)=\frac{1}{\pi} \int_{T} f(x+t) P(r, t) d t, 0 \leq r<1, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
P(r, t)=\frac{1}{2}+\sum_{k=1}^{\infty} r^{k} \cos k t=\frac{1}{2} \cdot \frac{1-r^{2}}{1-2 r \cos t+r^{2}}, 0 \leq r<1 . \tag{2}
\end{equation*}
$$

As is known (see e.g. [1]),

$$
\begin{gather*}
P(r, t)>0, t \in T \tag{3}\\
P(r, t)<A \frac{1-r}{(1-r)^{2}+t^{2}}, t \in T \tag{4}
\end{gather*}
$$

Denote by Φ the class of all functions $\omega:[0, \pi] \rightarrow R$ with the properties:

1. ω) is continuous on $[0, \pi]$;
2. ω is increasing;
3. $\omega(0)=0$;
4. $\omega(t)>0,0<t \leq \pi$.

Below $A(f), A(f, \eta), \ldots$ are positive constants depending only on the indicated parameters.
Denote $\varphi(x, t)=f(x+t)+f(x-t)-2 f(x)$.
Theorem 1. Let $f \in L(T), \omega \in \Phi$ and $0 \leq r<1$. If for a point $x \in T$

$$
\begin{equation*}
\int_{0}^{t}|\varphi(x, s)| d s \leq A(f, x) t \omega(t), 0<t \leq \eta \leq \pi \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
|f(x, r)-f(x)| \leq \mathrm{A}(f, x, \eta)(1-r) \int_{1-r}^{\eta} \frac{\omega(t)}{t^{2}} d t, \quad r \geq r_{0}(\eta) \tag{6}
\end{equation*}
$$

Proof. Taking into account equality (2), we write

$$
\frac{1}{\pi} \int_{T} P(r, t) d t=1, \quad 0 \leq r<1 .
$$

Therefore,

$$
\begin{gather*}
f(x, r)-f(x)=\frac{1}{\pi} \int_{0}^{\pi} \varphi(x, t) P(r, t) d t \frac{1}{\pi} \int_{0}^{1-r} \varphi(x, t) P(r, t) d t+\frac{1}{\pi} \int_{1-r}^{\eta} \varphi(x, t) P(r, t) d t+ \\
+\frac{1}{\pi} \int_{\eta}^{\pi} \varphi(x, t) P(r, t) d t \equiv \sum_{j=1}^{3} M_{j}(f, x, r, \eta) . \tag{7}
\end{gather*}
$$

In view of relations (2),(4),(5) and by virtue of(7), we have

$$
\begin{equation*}
\left|M_{1}(f, x, r)\right| \leq \frac{A}{1-r} \int_{0}^{1-r}|\varphi(x, t)| d t \leq A(f, x) \omega(1-r) \tag{8}
\end{equation*}
$$

Taking into account (4), we obtain

$$
\left|M_{2}(f, x, r, \eta)\right| \leq A(1-r) \int_{1-r}^{\eta} \frac{|\varphi(x, t)|}{t^{2}} d t
$$

If we apply the formula of integration by parts, then we obtain

$$
\left|M_{2}(f, x, r, \eta)\right| \leq A\left[\left|(1-r)\left[\int_{0}^{t}|\varphi(x, s)| d s \frac{1}{t^{2}}\right]_{1-r}^{\eta}\right|+2(1-r) \int_{1-r}^{\eta}\left[\int_{0}^{t}|\varphi(x, s)| d s\right] \frac{d t}{t^{3}}\right]
$$

Therefore, by virtue of condition (5), we can write

$$
\begin{align*}
\left|M_{2}(f, x, r, \eta)\right| \leq & A(f, x) \omega(1-r)+A(f, x, \eta)(1-r) \int_{1-r}^{\eta} \frac{\omega(t)}{t^{2}} d t \leq \\
& \leq A(f, x, \eta)(1-r) \int_{1-r}^{\eta} \frac{\omega(t)}{t^{2}} d t \tag{9}
\end{align*}
$$

If we use relation (4), then from equality (7) we conclude that

$$
\begin{equation*}
\left|M_{3}(f, x, r, \eta)\right| \leq A(f, x, \eta)(1-r) \leq A(f, x, \eta)(1-r) \int_{1-r}^{\eta} \frac{\omega(t)}{t^{2}} d t . \tag{10}
\end{equation*}
$$

Taking into account relations (7), (8), (9) and (10), we obtain (6). Thus, theorem 1 is proved.
From Theorem 1 it follows
Theorem 2. Let $f \in L(T), \omega \in \Phi,[a, b] \subset T, b-a>0$ and

$$
\sup _{a \leq x \leq b} \int_{0}^{t}|\varphi(x, s)| d s \leq A(f) t \omega(t), 0<t \leq \eta \leq \pi
$$

then

$$
\begin{equation*}
\sup _{a \leq x \leq b}|f(x, r)-f(x)| \leq \mathrm{A}(f, \eta)(1-r) \int_{1-r}^{\eta} \frac{\omega(t)}{t^{2}} d t, \quad r \geq r_{0}(\eta) \tag{11}
\end{equation*}
$$

If $T=[a, b]$, then from equality (11) we obtain

$$
\|f(\cdot, r)-f(\cdot)\|_{c} \leq A(f)(1-r) \int_{1-r}^{\pi} \frac{\omega(t)}{t^{2}} d t, r \geq r_{0}
$$

From this inequality it is possible to receive the corresponding result of Natanson [2].

REFERENCES:

1. A. Zygmund, (1959), Trigonometric Series, Vol. I, Cambridge.
2. I.P. Natanson (1950), DAN SSSR. 73, 2: 273-276.

Received July, 2013

