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ABSTRACT. In this paper a boundary value problem for thermoelastic prismatic shell with
microtemperatures is considered. A hierarchy of two-dimensional models for a static three-
dimensional model for prismatic shell with surface force, the normal component of heat flux and the
first heat flux moment given on the upper and the lower faces of the prismatic shell is constructed.
The two-dimensional boundary value problems corresponding to the hierarchical models are
investigated in suitable function spaces. The convergence of the sequence of vector-functions of
three space variables, restored from the solutions of the two-dimensional boundary value problems
of the constructed hierarchy to the exact solution of the original three-dimensional problem is
proved and the rate of approximation is estimated provided that the solution satisfies additional
regularity conditions. © 2013 Bull. Georg. Natl. Acad. Sci.
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Investigation of mathematical models of continuum describing interaction of several physical fields is
important both from theoretical and from the practical viewpoint due to numerous applications in chemical
industry, biology, aviation, material science, etc. One of the theories of continua with microstructure was
proposed by A.C. Eringen [1], where the particles of the continua are assumed to be composed of microelements
which undergo microdeformations, and from the principles of conservation of mass, conservation of
microinertia, balance of linear momentum, balance of first moment of momentum and the balance of energy the
system of partial differential equations and boundary conditions for deformations, microdeformations and
temperature are obtained. By extending Eringen’s theory R. Grot [2] constructed the theory of thermoelasticity
for thermoelastic materials with inner structure, where the concept of microtemperatures is introduced and it
is assumed that the microelements have different temperatures. Further, a mathematical model for fluids with
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microtemperatures was proposed by P. Riha [3]. It should be pointed out that experimantal data for the
silicone rubber containing spherical aluminium particles and for the human blood were found to conform
closely to predicted theoretical thermal conductivity. Boundary value, initial-boundary value problems and
problems of steady vibrations, fundamental solutions and exponential stability of solutons of the corre-
sponding equations for linear models of the theory of thermoelasticity with microtemperatures were studied
by various authors (see [4-6] and references given therein).

Mathematical models of various engineering structures along with three-dimensional problems often
include two-dimensional approximations of three-dimensional boundary and initial-boundary value prob-
lems. One of the methods of constructing two-dimensional models for linearly elastic prismatic shells was
proposed by I. Vekua in [7]. In this paper Vekua considered a three-dimensional linear model of an elastic
prismatic shell and, expanding components of the displacement vector-function into orthogonal Fourier-
Legendre series with respect to the variable of the prismatic shell thickness, a hierarchy of differential two-
dimensional models was obtained. The estimates of accuracy for the two-dimensional hierarchical models for
elastic prismatic shells were obtained in the spaces of classical regular functions in the paper [8], and the
reduced two-dimensional models for thin shallow shells constructed by I. Vekua were investigated in Sobolev
spaces in [9]. Later on, Vekua’s dimensional reduction method, its generalizations and extensions for various
problems of mathematical physics were studied in [10-15].

The present paper is devoted to the construction and investigation of two-dimensional hierarchical
models of thermoelastic prismatic shells with microtemperatures by applying variational approach. We con-
sider the variational formulation of three-dimensional boundary value problem for static linear model of
thermoelastic prismatic shell within the theory of thermoelasticity with microtemperatures, and construct its
two-dimensional hierarchical models in Sobolev spaces, when temperature and components of
microtemperature and displacement vectors are equal to zero along a part of the lateral boundary of the body,
and the surface forces, the normal component of heat flux and the first heat flux moment are given on the
upper and the lower faces, and on the remaining part of the lateral boundary of the prismatic shell. We
investigate the existence and uniqueness of solutions of the reduced two-dimensional problems in suitable
weighted Sobolev spaces. Moreover, we prove the convergence of the sequence of vector-functions of three
space variables restored from the solutions of the constructed two-dimensional problems to the solution of
the original three-dimensional boundary value problem and if it possesses additional regularity we estimate

the rate of convergence.

For any bounded domain Q2 c R?, p >1, with Lipschitz boundary we denote by 17 (Q) the space of
square integrable functionsin ) in the Lebesgue sense. *2 (Q) = HFf (Q) , k=1, is the Sobolev space of
order k based on L* (), H*(Q) = (H"(©))°, L (Q)= (L*(©))? and L () = [Lk (D), where T is
a Lipschitz surface.

Let us consider a thermoelastic body €2 c R® with microtemperatures, which consists of inhomogene-

ous, isotropic thermoelastic material with Lamé coefficients A(x), u(x), mass density p(x),thermal con-

ductivity x(x),thermoelastic coefficient B(x), and parameters &, (x), x,(x), &5(x), x4(x), &5(x), K¢(x)
which define thermal properties of the material. The applied body force density we denote by

f =(f,):Q — R’ and the density of heat sources we denote by £?:Q2x(0,7) — R and the density of the

first heat source moment vector we denote by £ = (£, ): Q) — R*. The body is clamped along a part T, of
i p 0
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the boundary I'j = &Q and on the remaining part I'; =I"\T'; surface force with density g = (g;):I', —> R’

is given, the temperature ¢ vanishes along Fg cT and on the remaining part T¢ = F\Fg the normal

component of heat flux with density g”:17 — R is given, and the components of the microtemperature

w = (w;) vanish along a part Fg/’ ofthe boundary and on the remaining part F]M =T\ 1"34 the density of the
first heat flux moment g"” =(g"): ') — R’ is given.

The static linear three-dimensional model of the stress-strain state of the thermoelastic body with

microtemperatures in differential form is given by the following system of partial differential equations

3 3
0 . .

‘Za[izem(ﬂﬁa +2uez;,-(u)—ﬂ95g,} =pfi  nQ,i=123 (1)
Jj=1 J p=1

o o0
—E - K—a +R W, =pf°? in Q, @)
—3iK36(W)5+K%+K%+KG—Q+KW_—fM nQ.i=12.3 3
E@xj 42 p i 56x1- 6 o 36xl- 2Wi Pli m €, 1=12,3, ©))

3
Z[}“Zepp(“)@/ +21u61/(u) ﬂ95 JV =g;on F], l_l 2 3 ll(O) Oon FO’ (4)

J=1

3
o0
—E K—+Kw; vjzge on r?,@({))zo on Fg, o)
. Ox;

J

3 3
ow;
Z[@Zem(w)@ +K5 +K6 . ]v =g" on M, i=1,2,3, w(0)=0 on T} ©6)
1 1
where u=(u;):Q - R’ is the displacement vector, 0:Q— R is the temperature distribution,
w=(w):Q - R’ is the microtemperature vector, e;(V)=1/2(0,v; +0,v;), 1,j=1,2,3.1f we multiply
equations (1) by smooth enough functions v;, which vanish on I';, multiply equation (2) by smooth enough

function ¢ vanishing on r§, multi ply equations (3) by smooth enough functions z; vanishing on Fg’ ,

integrate the obtained equations over the domain ) and apply integration by parts, taking into account
boundary conditions (4), (5), (6), we obtain

3 3 3
[ A e, e (M +2u(0) ¢ (W (v) e =

Q p=1 q=1 i,j=1
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[ (x)@Z—dx+Z j P(x)f(x), (x)dx+z j gv.dl, o
X i=l O i=1 T,
20 a(p
[ K(x dx+z I K (W, —dx I (%) /2 (X)p(x)dx I 2%odl, @®)

[ K4(x)Zepp(W)Zeqq(Z)+K5(x)z——+ Ko (x )Z aw Ei e +ZIK3(x)—Z dx +

,]Q

3 3 3
£y [ K (w,zjdr=— I p()fY (0)z; ()= I g!z dr, )

10 Js) =R

forall v=(v;), ¢ and z =(z;) , which are smooth enough and equal to zeroon I';, Fg and F(I)” , respec-
tively. Note that if w = (1,) , & and w = (w;) are solutions of the equations (7)-(9) and are smooth enough,
then they also satisfy differential equations (1)-(3) and boundary conditions (4)-(6). So, the problem (1)-(6) is
equivalent to the problem (7)-(9), which can be used to define the weak solution of the three-dimensional
boundary value problem for thermoelastic prismatic shell with microtemperatures.

Hereafter we consider the following variational formulation of the three-dimensional initial boundary

value problem (1)-(6): find u e V(QQ) , 0 e V¢ (Q), we vM (€2) , which satisfy the following equations

A(u,v) = [ (x)QZ—dx +Z [ PG £, Ceyv, (x)dx +Z [gvar, wev), (10)

i=l Q zlr1

B0, W), (9,2)) = [ PO/ (X)p(x)dx — j ¢ par-y [P0 )z, ey - > [g)fzar,

I, J=IQ J=IT,

Voel?(Q),ze VM (Q), (1D

where V(Q) = {ve H'(Q);tr(v)=0 on I';}, V¥(Q)={ve H'(Q);tr(v)=0 on T)'}, ¢r is the trace
operator from H'(Q) to H"*(I"), ¥?(Q) = {ve H'(Q);tr(v)=0 on T§}, tr is the trace operator from

HY(Q) to H'*(I),

3 3 3
A(V,v) = [ UD€, (D e, (MV+2u(x) D ¢;(Ve; (V) dr, IV, ¥ e V(Q),

Q p=l q=1 i,j=1
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B(G.2). ) = Y [0 22 (”dx+zj,<<x)z (pdx+

J=1 Jj=la

+'.{K4(x)zepp(i)zeqq(z)+K5(x)z__ 6( )ZTg]d +

i,j=1 i,j=1

+Z[;<(x)—z dx+zj;<(x)zzdx Vo,p eV’ (Q), z,ie V" (Q).

J=la Jj=lg
For the three-dimensional boundary value problem (10), (11) the following theorem is valid.
Theorem 1. Let Q) be a Lipschitz domain and the parameters characterizing mechanical and thermal

properties of the thermoelastic prismatic shell ) with microtemperatures be such that p, B, , 1, Kk,
K|, Ky, K3,Ky, Ks, kg € L7 (Q), p(x)=c, >0, p(x)zc, >0, 3A(x0)+2u(x) 2 ¢y, >0, K(x) 2 >0,
Ke(x) 2 Cp, > 0, |xs(x) [ K5(x) &g, ¢ =const >0, 3k,(x)+K5(x)+k4(x) 20, for almost all xeC2,

and there exists o« >0, for which the following condition is valid
()E2 + (05, (¥) s (0)En + i, (0 = ¢ (£2 +17), YEN €R , ae.in Q.

Ifr,, Fg , Fg’ are Lipschitz surfaces with positive areas and f = (fi)f’:1 el Q)), g= (gi)?zl € L4/3(F1 ),
M = (M), e8P, g = (g, e L@y, ferl’?(Q). g% e L'?(@Y). then the three-di-
mensional problem (10), (11) possesses a unique solution (u,0,w) € V(Q)x V% (@Q)x VM (()) .

Let us consider the particular case of the thermoelastic body with microtemperatures, when Q is a
thermoelastic prismatic shell with thickness vanishing on a part of'its lateral boundary, i.e. prismatic shell with

initial configuration, which is a Lipschitz domain () ofthe following form

Q={(x,x;,x3)€ R?; B (x,%,) <x3 <h'(x,%), (x,%,)€ o},
where o cR?> is a two-dimensional bounded Lipschitz domain with boundary éw,
n* eCO(aT)me)’:(a)uf) are continuous on @ , Lipschitz continuous in ® and on y cdo,

R (x1,%) > B (x,%,), for (x,x,)e@ U7, 7cdo is a Lipschitz curve, h"(x,x,)=h (x,x,), for
(x,x,) € 6w \7 . The upper and the lower faces of €2, defined by the equations x; =h"(x;,x,) and

X3 =h"(x,%), (x,X,) €@, we denote by I'" and ', respectively, and the lateral face, where the thick-

ness of Q is positive, we denote by T'=8Q\(T" UT ") = {(x,X,,x3) € R i (x5 %) < X3 <h"(x),%,),
(x,%,) € 7} . We assume that the temperature ¢, the components of the displacement vector-function
u = (u;) and the components of the microtemperature w = (w;) vanish along a part Lo ={(x,%,,x3) € RY;
B (x,%) < X3 <h"(x,%,), (X,%)€7Vy}, 7o ©¥ ,of the lateral face [~ of the prismatic shell and on the

remaining part I, =T’ \f_o of the boundary the normal component of heat flux with density g: I'' >R,
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surface force with density g=(g;):1} —R*and the density of the first heat flux moment
M~ (giM): I, - R® are given.

In order to construct the hierarchy of two-dimensional models let us consider the subspaces

VN (€)= Vlff’ Q) of V(Q)=VY(Q), N=(N,,N,,N,), consisting of vector-functions whose compo-

nents are polynomials with respect to the variable x5,

N,
i 1.7 i
N =N, =D G R (), v el (@), 05 <N, i=1.23, (12)
=0
7 + - _ + -
where y = x3h h , h= h 2h , h= h erh , P.(»y) denotes the Legendre polynomial of order

re Nu{0}. We also consider the subspaces V,gg Q) of p* (€Y), respectively, which consist of the

following functions
No 1 1 r r 5
Py, =D+ )Py, B @y, €L@) 7 =0 Ny (13)
r=0

Note that the functions 4™ and 4~ are Lipschitz continuous in @ and hence, due to Rademacher’s

theorem [16], 4™ and }~ are differentiable almost everywhere in o and Gahi el” (a)*) , for all subdomains

o, 0 co, a= 1,2 . Therefore, the positiveness of 4 in @ implies that for any vector-function
VN = ()it € Vx(Q) the corresponding functlons i € H' (@) forall o”, 0" cw,ie. vni € H! 1oc (@)
0<r <N,;, i=1,2,3.Similarly, for all functions ¢, € V,ge (Q) , the functions ¢ v, oftwo space variables

1

in the expressions of @y, belongto H'(0"), »" c o, i.e. Py, € H,, (o), r=0,..,N, . Moreover, the

norms "-”HI(Q) and ||-||H1(Q) in the spaces H' () and H ! g+ of vector-
1

i
functions wvn € [Hlloc (a))]N"2~3 , Njp3=N;+N,+N;+3, with components vn;, vy =(vNi), and

@y, €[HL (@], with components ®n,» Py, =(@y,), such that "VN *:"VN”HI(Q) and

8

"(ﬁNg B :”(/’Ng (- Using (12), (13) and properties of the Legendre polynomials [17], we obtain explicit
‘lo* »
3N Ni Si i 2

|| ZZ " +—) Z(s +—)(1 (=1 e 2on|  +
i=1r, §;=1; Lz(a)) [} (@)

Si 7 7 2
+Z Z (s, + )(a B = (=15 8,k Y2 i —h V28, vai+ (r + DR 20 v

o=l |[s,=r;+1 1> (@) ’

Bull. Georg. Natl. Acad. Sci., vol. 7, no. 3, 2013



26 Gia Avalishvili, Mariam Avalishvili, David Gordeziani

— 2 No 1 No 1 s g r 2
[ow, . = 2+ [+ D=0 gy |+ Py |
r=0 s=r Lz(a)) LZ(@)
2 || Mo 1 " o LR
r —\p 32 -172 -3/2
+Z Z (HE)(@@W —(=1)"8,h )h Py, —h O, @y, +(r+Dh T 0 hey, y ,
a=1||s=r+1 L (@)

where we assume that the sum with the lower limit greater than the upper one equals to zero.
I

For components \iNi and ¢, of VN e[H), (@)]M>* and (;Ne e[H),.(@)]""" | which possess the

< we can define the trace on 7 . Indeed, the corresponding vector-

properties ||VN||* <o and "(pNG

6*
function of three space variables vy = (Vy; )?:1 and function @y, belong to the space Vn(€2) H' (Q) and

V,f,e Q) c H(Q), respectively. Consequently, applying the trace operator ¢ : H 1(Q) S HY 2(1“) on the

space HI(Q),WG define the traces on ¥ for Vlih‘ and ¢y, , 1, =0,..,N;,i=123, r=0,...,Ny,

1 s s 1

. Kt . +
5 0n) = [ 1) 1 B, (), 15 (@) = [ 0@y, ;P2
h™ h”

Since the vector-functions vy =(vy;), Zy =(2y;) from the subspaces Vy(£2) and the functions @y,

from V,f,g (€Y) are defined by functions \iNi , zni and ¢ N, of two space variables, therefore considering the
original three-dimensional problem (10), (11) on these subspaces, we obtain the following hierarchy of two-

dimensional problems: find iy € Vy (o), §N5 € 17,35 (@) , Wy € Vy (@) , which satisfy the following equations

Ay (i, V) = Ly, Oy, ¥y, Vi € Vy (@), (14)
By x (O, . 0): @y, - 2x)) = Lyn (B, 20)) Yy, €Vy (0),2y €Vx(@), (15)

L <, (o) =0 on o, 5=0,.,N;, i=12,3},

1 1

where Vy (o) = {iy = (\I/Ni) e[H), (@)1 X

1755 (@)= iy, =(py,) € [H),, ()", <0,1r5(py, ) = 0,7 =0,...N} , the bilinear forms Ay, By,x

o .
are defined by the corresponding forms in the left-hand sides of the equations (10), (11),
Ax (ix,Vy) = Ay, Vy) 5 By (O, 5082 (By, . 2x)) = BBy, - Wx): (@, - 2x)) , for all iy, vy € Vy(0),
§N5,§5N5 € 17,35 (@), Wx.Zy €Vn(®), which correspond to Uy,Vy € VN (Q), Oy, .0y, EV& (),

Wy, Zy € VN (Q). Taking into account the properties of the Legendre polynomials [17] we obtain explicit

expressions for the bilinear forms A4y and By, n , when the parameters A, #, K, Ky, Ky, k3, Ky, K5, K¢ are

constants,
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An(VnsVN) = f[”"‘ j[ [izepp(J’N)Zeqq(VN)“‘zﬂzey(yN)eu(VN)Jd

®» q=1 i,j=1

—
<
=
<
=
<
|
S
5

: oy og
VSN((WVS’yN) ((st N)) ZZ[’“" j '.h TS_EA Yy P _Lvs(p/v do +

r=0 i=1

3 min{N;,Ng} 1 1 6(;)N v. . Ninay 1 17 T
+Z (r—i——j/cl ‘.—yNi ==L Py, da)—i—Z(r—i-—jIQ [—Zepp(yN)Zeqq(zN)da)—i-
=1 =0 2) Lh O, r=0 2 ol g=1
3 min{N,,N;} ! !
. S 1 1 any N. - aZNz V .
+ r+— — —— -L do+
i;l gt ( 2j 5 '.h Gx. ri V' Nj 1 Nz

3 min{N;,Ng} 1 1 al//Ng O 3 N 1 1r r
+Z I""rz K3Q[Z a—x—Lﬁ ll/Ne ZNi d&)+zz I""rz whle ZNi d&)

where N, = max{N;,N,, N5, Ny}, Vx; = ()’/Nl.):]’:o Zy = (Z’Ni);;v':o i=12,3 yn; =2zNi =vNi =0, for r > N,

r ~ 1 r r ﬁ ~
ejj(Vy) :5£ai(VNj)+aj(VNi)+eij(VN))a i,j=12,3,

N,

max 1 s is B
> Z(HEJ(W(@W — (=)o) +

s=r+l

T r+1
éi(VN) =~

(Gih VN t+ Gjh VNi J =

Nmi\x P ;o L v
+w(@jh+_(_l)majh)}+z % (H%j(l_(_l)m)((z 1%(1 ) LU ‘l)éj 2 J

s=r
Lk
forany £ — &)V e RY", reN, 0<r<nN

N

BE =0 ZEe 3 (sed]@n —ciyrom i3 seg Jamy ) EHEDE

and we assume that a sum with the upper limit less than the lower one equals zero. The linear forms Lyy, , L?\’GN

are defined by the right-hand sides of the equations (10), (11) and are given by the following expressions
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N r Ny R
LNNG (éNe ’GN) :Z(I’-l-%j [ﬂ[h%[Z(s +%)VN3(1_(_1)V+S)]+
r=0 ® s=r

2 N,
T o hr 5 hx 1 NI
+;Z GOCVNa—(r+1)%vNa—S§] “(ng(aah*—(q) “Gah) Oy, do +
3 N 1 v (o - . 15
> s [ZVM pfi+gi A +g A (1) dw+IZVNigidy"
i=1 r,=0 @»

4l

N,
L of N\p1r (r . , 1o
L%GN(((pNg,zN)FZ[HEj f;(p% {pfe—ge*&—g@ 2 (-1 jdﬂ)—I;(Pw@ gl dy |+
r=0 @ 14

”

3 N, 7 .
f N p1n [ 7] . , 1n
+ZZ[@*5J szNf[—pﬁM—gl“%—gl“ z(—l)f]dw—f;zlvigl“ dr, |
[0

14!

h+
and 7, =7 \%y, A, =\/l+(6]hi)2 +(8,h), o= [(pl’,(z)dx3, for all functions ¢ € I*(Q), r e N {0},
ja

+

g, g9+ , giM and g, ge’, giM ~ arerestrictions of g;, ge, giM , respectively, on the upper I'" and the

lower I faces of the prismatic shell.

For the constructed two-dimensional boundary value problems (14), (15) the following existence and
uniqueness theorem is proved.

Theorem 2. If @ and functions k", h~ are such that Q is a Lipschitz domain, ¥, is a Lipschitz curve
with positive length, p, B, A, K, k, K|, K,, K3, K4, Ks, k, € L*(QQ) there exists o >0 such that
p(x)zc, >0, u(x)zc, >0, 3Ax)+2u(x) 2 ¢, >0, K(x) 2 ¢, >0, K45(x) 2 Cp, > 0, | x5(x) < Kg(x)—54,
gc =const >0, 3x,(x)+x5(x)+K4(x) 20, a.e.in Q,

KOS + (1, () +oky () + ok, (0 2 ¢, (67 +n°), VE,neR

and the functions fl gl g, ﬁM g, 8" (1=0,.,N,i=1,2,3), 7, g%, g% (r=0,..,Ng) satisfy
the following conditions

WV el (w), Vg el ), g el** (), r=0,..N, i=123,

1

WV £0 e 195 (), 234 g™ e I (@), 14 g0 e [3(y,), =00 N,

YO M e [ (w), A g e I3 (@), Vg™ e I3 (1), 1, =0,..,N,, i=1,2,3,
then the static two-dimensional problem (14), (15) possesses a unique solution.
Along with the investigation of the boundary value problems corresponding to the obtained hierarchy of
two-dimensional models it is very important to study the relationship between the constructed two-dimen-

sional boundary value problems and the original three-dimensional one. In order to formulate the corre-
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sponding theorem let us define the following anisotropic weighted Sobolev space

H}‘;j’s Q)= ;85 ve H(Q),0,h v e *(Q),c =1,2,r =1,...,5}, seN,

which is a Hilbert space equipped with the corresponding norm

) s . 2
=S 3 )

Theorem 3. Let Q) be a Lipschitz domain, ¥, be a Lipschitz curve with positive length, p, B, i, K,

Oy h Oy

8, oL +
o 3 LZ(Q)

K, K, Ky, Ky, K4, Ks, kqelL”(Q), p(x)2c,>0, pu(x)zc, >0, 3A(x)+2u(x) 2 ¢y, >0,
k(x)2c, >0, Kg(X) 2c >0, [ x5(x) < K6(xX)— &, g5 =const >0, 3x,(x) + k5 (x) + K4 (x) 2 0, for almost
all x e Q, and there exists o > (), for which the following condition is valid
K(X)E2 + (K (x) +oars(x)En +ak, (xm? = Cy, (€*+n?),VEneR, ae.in Q.
If £ =)L el @), g=(g)h e L@, " =(f") e L), g =), e L (1),
1P er’5(Q), g% e LY3(T)), then the sequences of vector-functions uy , Wy and functions Oy, restored

from the solutions iy, Wy and §N5 of the reduced two-dimensional problems (14), (15), tend to the

solutions w, w and 0 of the original three-dimensional problem (10), (11),

uy —>u in H(Q),
Oy, >0 in H'(Q), as N, =min{N,,N,, N;,N,} — oo,
Wy > W in H'(Q),

In addition, if u e (H:l’i’s‘ Q) ,Oe H;l;]’sz Q), we (H:l;]’s3 (®)% s 81585,83 €N, 81,8,,8 22, then the
following estimate is valid

W =Wl g S(N—SO(T,Q,f"O,hi,N, Ny

min

"ll ~un "HI(Q) +||9 N QNG H! (Q)

where s =min{s; —1,5, —1Ls; =1}, o(T, T, ,N,N,) >0, as Ny, —> .
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