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ABSTRACT. In this paper a boundary value problem for thermoelastic prismatic shell with
microtemperatures is considered. A hierarchy of two-dimensional models for a static three-
dimensional model for prismatic shell with surface force, the normal component of heat flux and the
first heat flux moment given on the upper and the lower faces of the prismatic shell is constructed.
The two-dimensional boundary value problems corresponding to the hierarchical models are
investigated in suitable function spaces. The convergence of the sequence of vector-functions of
three space variables, restored from the solutions of the two-dimensional boundary value problems
of the constructed hierarchy to the exact solution of the original three-dimensional problem is
proved and the rate of approximation is estimated provided that the solution satisfies additional
regularity conditions. © 2013 Bull. Georg. Natl. Acad. Sci.
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Investigation of mathematical models of continuum describing interaction of several physical fields is
important both from theoretical and from the practical viewpoint due to numerous applications in chemical
industry, biology, aviation, material science, etc. One of the theories of continua with microstructure was
proposed by A.C. Eringen [1], where the particles of the continua are assumed to be composed of microelements
which undergo microdeformations, and from the principles of conservation of mass, conservation of
microinertia, balance of linear momentum, balance of first moment of momentum and the balance of energy the
system of partial differential equations and boundary conditions for deformations, microdeformations and
temperature are obtained. By extending Eringen’s theory R. Grot [2] constructed the theory of thermoelasticity
for thermoelastic materials with inner structure, where the concept of microtemperatures is introduced and it
is assumed that the microelements have different temperatures. Further, a mathematical model for fluids with
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microtemperatures was proposed by P. Riha [3]. It should be pointed out that experimantal data for the
silicone rubber containing spherical aluminium particles and for the human blood were found to conform
closely to predicted theoretical thermal conductivity. Boundary value, initial-boundary value problems and
problems of steady vibrations, fundamental solutions and exponential stability of solutons of the corre-
sponding equations for linear models of the theory of thermoelasticity with microtemperatures were studied
by various authors (see [4-6] and references given therein).

Mathematical models of various engineering structures along with three-dimensional problems often
include two-dimensional approximations of three-dimensional boundary and initial-boundary value prob-
lems. One of the methods of constructing two-dimensional models for linearly elastic prismatic shells was
proposed by I. Vekua in [7]. In this paper Vekua considered a three-dimensional linear model of an elastic
prismatic shell and, expanding components of the displacement vector-function into orthogonal Fourier-
Legendre series with respect to the variable of the prismatic shell thickness, a hierarchy of differential two-
dimensional models was obtained. The estimates of accuracy for the two-dimensional hierarchical models for
elastic prismatic shells were obtained in the spaces of classical regular functions in the paper [8], and the
reduced two-dimensional models for thin shallow shells constructed by I. Vekua were investigated in Sobolev
spaces in [9]. Later on, Vekua’s dimensional reduction method, its generalizations and extensions for various
problems of mathematical physics were studied in [10-15].

The present paper is devoted to the construction and investigation of two-dimensional hierarchical
models of thermoelastic prismatic shells with microtemperatures by applying variational approach. We con-
sider the variational formulation of three-dimensional boundary value problem for static linear model of
thermoelastic prismatic shell within the theory of thermoelasticity with microtemperatures, and construct its
two-dimensional hierarchical models in Sobolev spaces, when temperature and components of
microtemperature and displacement vectors are equal to zero along a part of the lateral boundary of the body,
and the surface forces, the normal component of heat flux and the first heat flux moment are given on the
upper and the lower faces, and on the remaining part of the lateral boundary of the prismatic shell. We
investigate the existence and uniqueness of solutions of the reduced two-dimensional problems in suitable
weighted Sobolev spaces. Moreover, we prove the convergence of the sequence of vector-functions of three
space variables restored from the solutions of the constructed two-dimensional problems to the solution of
the original three-dimensional boundary value problem and if it possesses additional regularity we estimate
the rate of convergence.

For any bounded domain , 1p pR , with Lipschitz boundary we denote by 2L  the space of

square integrable functions in  in the Lebesgue sense. ,2k kW H , 1,k  is the Sobolev space of

order k based on 2L , 3( ) ( ( ))k kHH , 2 2 3( ( ))LL  and 3ˆ ˆ( ) [ ( )]k kLL , where ˆ  is
a Lipschitz surface.

Let us consider a thermoelastic body 3R with microtemperatures, which consists of inhomogene-
ous, isotropic thermoelastic material with Lamé coefficients ( )x , ( )x , mass density ( )x , thermal con-

ductivity ( )x , thermoelastic coefficient ( )x , and parameters 1( )x , 2 ( )x , 3 ( )x , 4 ( )x , 5 ( )x , 6 ( )x
which define thermal properties of the material. The applied body force density we denote by

( ):iff 3R and the density of heat sources we denote by : (0, )f T R  and the density of the

first heat source moment vector we denote by 3( ) :M M
iff R . The body is clamped along a part 0  of
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the boundary 0  and on the remaining part 1 0\  surface force with density 3
1( ):igg R

is given, the temperature  vanishes along 0  and on the remaining part 1 0\ the normal

component of heat flux with density 1:g R  is given, and the components of the microtemperature

( )iww  vanish along a part 0
M of the boundary and on the remaining part 1 0\M M  the density of the

first heat flux moment 3
1( ):M M M

igg R  is given.

The static linear three-dimensional model of the stress-strain state of the thermoelastic body with
microtemperatures in differential form is given by the following system of partial differential equations

3 3

1 1

( ) 2 ( )pp ij ij ij i
jj p

e e f
x

u u in , 1, 2,3,i    (1)
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1
1

j
j jj

w f
x x

in ,                     (2)

3 3
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1 1

( ) j Mi
pp ij i i

j i j ij p

w we w f
x x x x

w       in , 1,2,3,i (3)

3 3

1 1

( ) 2 ( )pp ij ij ij j i
j p

e e gu u on 1 , 1, 2,3i ,  (0)u 0 on 0 , (4)

3

1
1

j j
jj

w g
x

  on    1 , (0) 0    on   0 , (5)

3 3

4 5 6
1 1

( ) j Mi
pp ij j i

i jj p

w we g
x x

w on 1
M , 1, 2,3i , (0)w 0   on 0

M , (6)

where ( ):iuu 3R is the displacement vector, , : R  is the temperature distribution,

( ):iww 3R  is the microtemperature vector, , ( ) 1/ 2( )ij i j j ie v vv ,  , 1,2,3i j . If we multiply

equations (1) by smooth enough functions iv , which vanish on 0 , multiply equation (2) by smooth enough

function  vanishing on 0 , multi ply equations (3) by smooth enough functions iz  vanishing on 0
M ,

integrate the obtained equations over the domain  and apply integration by parts, taking into account
boundary conditions (4), (5), (6), we obtain

3 3 3

1 1 , 1

( ) ( ) ( ) 2 ( ) ( ) ( )pp qq ij ij
p q i j

x e e x e e dxu v u v
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1

3 3 3

1 1 1

( ) ( ) ( ) ( ) ,i
i i i i

ii i i

v
x dx x f x v x dx g v d

x (7)

1

3 3

1
1 1

( ) ( ) ( ) ( ) ( ) ,j
j j jj j

x dx x w dx x f x x dx g d
x x x (8)

3 3 3 3 3

4 5 6 3
1 1 , 1 , 1 1

( ) ( ) ( ) ( ) ( ) ( )j i i i
pp qq j

i j j j jp q i j i j j

w z w zx e e x x dx x z dx
x x x x x

w z

1

3 3 3

2
1 1 1

( ) ( ) ( ) ( ) ,
M

M M
j j j j j j

j j j

x w z dx x f x z x dx g z d (9)

for all ( )ivv ,  and ( )izz , which are smooth enough and equal to zero on 0 , 0  and 0
M , respec-

tively. Note that if ( )iuu ,  and ( )iww  are solutions of the equations (7)-(9) and are smooth enough,

then they also satisfy differential equations (1)-(3) and boundary conditions (4)-(6). So, the problem (1)-(6) is
equivalent to the problem (7)-(9), which can be used to define the weak solution of the three-dimensional
boundary value problem for thermoelastic prismatic shell with microtemperatures.

Hereafter we consider the following variational formulation of the three-dimensional initial boundary

value problem (1)-(6): find ( )u V , ( )V , ( )Mw V , which satisfy the following equations

1

3 3 3

1 1 1

( , ) ( ) ( ) ( ) ( ) ,i
i i i i

i i ii

v
A x dx x f x v x dx g v d

x
u v ( )v V , (10)

1 1

3 3

1 1

(( , ), ( , )) ( ) ( ) ( ) ( ) ( ) ( ) ,M M
j j j j

j j

B x f x x dx g d x f x z x dx g z dw z

( ), ( )MV z V , (11)

where 1( ) { ( ); ( )V v H tr v 0  on 0}, 1( ) { ( ); ( )MV v H tr v 0  on 0 }M , tr  is the trace

operator from 1( )H  to 1/2 ( )H , 1( ) { ( ); ( ) 0V v H tr v  on 0} , tr  is the trace operator from

1( )H  to 1/2 ( )H ,

3 3 3

1 1 , 1

( , ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ,          , ( ),pp qq ij ij
p q i j

A x e e x e e dxv v v v v v v v V
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For the three-dimensional boundary value problem (10), (11) the following theorem is valid.
Theorem 1. Let  be a Lipschitz domain and the parameters characterizing mechanical and thermal

properties of the thermoelastic prismatic shell  with microtemperatures be  such that , , , , ,

1 , 2 , 3 , 4 , 5 , 6 ( )L , ( ) 0x c , ( ) 0x c , 3 ( ) 2 ( ) 0x x c , ( ) 0x c ,

66 ( ) 0x c , 5 6 6| ( ) | ( )x x , 6 0const , 4 5 63 ( ) ( ) ( ) 0x x x , for almost all x ,

and there exists 0 , for which the following condition is valid

 
1

2 2 2 2
1 3 2( ) ( ( ) ( )) ( ) ( )x x x x c , , R ,  a.e. in .

If 0 , 0 , 0
M  are Lipschitz surfaces with positive areas and 3 6/5

1( ) ( )i iff L , 3
1( )i igg 4/3

1( )L ,
3 6/5

1( ) ( )M M
i iff L , 3

1( )M M
i igg 4/3

1( )ML , 6/5 ( )f L , g 4/3
1( )L , then the three-di-

mensional problem (10), (11) possesses a unique solution ( , , ) ( )u w V ( ) ( )MV V .

Let us consider  the particular case of the thermoelastic body with microtemperatures, when  is a
thermoelastic prismatic shell with thickness vanishing on a part of its lateral boundary, i.e. prismatic shell with
initial configuration, which is a Lipschitz domain  of the following form

3
1 2 3 1 2 3 1 2 1 2{( , , ) ; ( , ) ( , ), ( , ) },x x x h x x x h x x x xR

where 2R  is a two-dimensional bounded Lipschitz domain with boundary ,
0 0,1( ) ( )loch C C  are continuous on , Lipschitz continuous in  and on ,

1 2 1 2( , ) ( , ),h x x h x x  for 1 2( , )x x ,  is a Lipschitz curve, 1 2 1 2( , ) ( , ),h x x h x x  for

1 2( , ) \x x . The upper and the lower faces of , defined by the equations 3 1 2( , )x h x x  and

3 1 2( , )x h x x , 1 2( , )x x , we denote by and , respectively, and the lateral face, where the thick-

ness of  is positive, we denote by 3
1 2 3\ ( ) {( , , ) ;x x x R 1 2 3 1 2( , ) ( , ),h x x x h x x

1 2( , ) }x x . We assume that the temperature , the components of the displacement vector-function

( )iuu  and the components of the microtemperature ( )iww  vanish along a part 3
0 1 2 3{( , , ) ;x x x R

1 2 3 1 2( , ) ( , ),h x x x h x x  1 2 0( , ) }x x , 0 , of the lateral face  of the prismatic shell and on the

remaining part 1 0\  of the boundary the normal component of heat flux with density 1:g R ,
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surface force with density 3
1( ):igg R and the density of the first heat flux moment

3
1( ):M M

igg R  are given.

In order to construct the hierarchy of two-dimensional models let us consider the subspaces

( ) ( )M
N NV V  of ( ) ( )MV V , 1 2 3( , , )N N NN , consisting of vector-functions whose compo-

nents are polynomials with respect to the variable 3x ,

( )ivN Nv ,  
0

1 1( ) ( ),
2

i i

i

i

N r
ii i r

r

v r v P y
h

NN   2 ( ), 0 , 1, 2,3,
ir

i i iv L r N iN  (12)

where 3x h
y

h
, 

2
h hh , 

2
h hh , ( )rP y  denotes the Legendre polynomial of order

{0}r N . We also consider the subspaces ( )NV  of ( )V , respectively, which consist of the

following functions

0

1 1( ) ( ),
2

N r

N rN
r

r P y
h

2 ( )
r

N L , 0,...,r N . (13)

Note that the functions h  and h  are Lipschitz continuous in  and hence, due to Rademacher’s’s

theorem [16], h  and h  are differentiable almost everywhere in  and *( )h L , for all subdomains

* , * , 1,2 . Therefore, the positiveness of h  in implies that for any vector-function

3
1( ) ( )i ivN N Nv V  the corresponding functions 1 *( )

ir
iv HN  for all * , * , i.e. 1 ( )

ir
i locv HN ,

0 , 1,2,3i ir N i . Similarly, for all functions ( )N NV , the functions 
r

N  of two space variables

in the expressions of N  belong to 1 *( )H , * , i.e. 1 ( )
r

locN H , 0,...,r N . Moreover, the, the

norms 1( ). H  and 1( ). H  in the spaces 1( )H  and 1( )H  define weighted norms *.  and *.  of vector-

functions  1,2,31[ ( )]N
locv HN , 1,2,3 1 2 3 3N N N N , with components 

ir
ivN , ( )

ir
iv vNN , and

11[ ( )]N
N locH ,  with components 

r

N ,  ( )
r

N N ,  such that 1 ( )*
vN N Hv  and

1* ( )N N H . Using (12), (13) and properties of the Legendre polynomials [17], we obtain explicit

expressions of the norms *.  and *. ,

2
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2 3/ 2 1/ 2
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1 1( ) ( )(1 ( 1) )
2 2

N N s r
r s

N N N
Lr s r L

r s h h
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22
3/ 2 1/ 2 3/ 2

( )1 1

1( )( ( 1) ) ( 1) ,
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N s r r
r s

N N N
Ls r

s h h h h r h h

where we assume that the sum with the lower limit greater than the upper one equals to zero.

For components 
ir

ivN  and 
r

N  of  1,2,31[ ( )]N
locv HN  and 11[ ( )]N

locN H , which possess the

properties 
*

vN  and 
*N   we can define the trace on . Indeed, the corresponding vector-

function of three space variables 3
1( )i ivN Nv  and function N  belong to the space 1( ) ( )NV H  and

1( ) ( )NV H , respectively. Consequently, applying the trace operator 1 1/ 2: ( ) ( )tr H H  on the

space 1( )H , we define the traces on  for 
ir

ivN  and 
r

N , 0,..., ,i ir N 1, 2,3i , 0,...,r N ,

3( ) ( ) | ( ) ,
i

i

hr
i i r

h

tr v tr v P z dxN N 3( ) ( ) | ( )
hr

N rN
h

tr tr P z dx .

Since the vector-functions ( )ivN Nv , ( )izN Nz  from the subspaces ( )NV  and the functions N

from ( )NV  are defined by functions 
ir

ivN , 
ir

izN  and 
r

N of two space variables, therefore considering the

original three-dimensional problem (10), (11) on these subspaces, we obtain the following hierarchy of two-

dimensional problems: find uN ( ),VN ( )N NV , ( )w VN N , which satisfy the following equations

( , ) ( , ), ( ),N NA u v L v v VN N N N N N N (14)

(( , ), ( , )) (( , )), ( ), ( )N N N N N N NB w z L z V z VN N N N N N N , (15)

where 1,2,31( ) { ( ) [ ( )] ;
ir N

i locV v v HNN N  *vN , ( ) 0
ir

itr vN  on 0 , 0,...,i ir N , 1,2,3}i ,

11
*

( ) { ( ) [ ( )] ; , ( ) 0, 0,... }
r r

N
N N loc NN NV H tr r N , the bilinear forms AN , NB N

are defined by the corresponding forms in the left-hand sides of the equations (10), (11),

( , ) ( , )A u v AN N N N Nu v , (( , ), ( , )) (( , ), ( , ))N N N N NB w z BN N N N Nw z , for all ,u vN N ( ),VN

, ( )N N NV ,  , ( )w z VN N N ,  which correspond to ,N Nu v ( ),NV , ( )N N NV ,

, ( )N N Nw z V . Taking into account the properties of the Legendre polynomials [17] we obtain explicit

expressions for the bilinear forms AN  and NB N , when the parameters , , , 1 , 2 , 3 , 4 , 5 , 6  are

constants,
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and we assume that a sum with the upper limit less than the lower one equals zero. The linear forms NLN , NL N

are defined by the right-hand sides of the equations (10), (11) and are given by the following expressions
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and 1 0\ ,  2 2
1 21 ( ) ( ) ,h h  3( ) ,

hr

r
h

P z dx  for all functions 2 ( )L , {0}r N ,

ig , g , M
ig  and ig , g , M

ig  are restrictions of ig , g , M
ig , respectively, on the upper  and the

lower  faces of the prismatic shell.
For the constructed two-dimensional boundary value problems  (14), (15) the following existence and

uniqueness theorem is proved.

Theorem 2. If and functions h , h  are such that  is a Lipschitz domain, 0  is a Lipschitz curve

with positive length, , , , , , 1 , 2 , 3 , 4 , 5 , 6 ( )L there exists 0  such that

( ) 0x c , ( ) 0x c , 3 ( ) 2 ( ) 0x x c , ( ) 0x c , 
66 ( ) 0x c , 5 6 6| ( ) | ( )x x ,

6 0const , 4 5 63 ( ) ( ) ( ) 0,x x x a.e. in ,

1

2 2 2 2
1 3 2( ) ( ( ) ( )) ( ) ( )x x x x c , , R

and the functions 
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if , 
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ig , ig ,
ir
M

if , ,
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M
ig M

ig  ( 0,..., , 1, 2,3)i ir N i , 
r

f ,
r

g , g ( 0,..., )r N  satisfy

the following conditions

1/6 6/5 3/ 4 4/3( ),    ( ),
ir

i ih f L g L  1/4 4/3
1( ), 0,..., , 1,2,3,

ir

i i ih g L r N i

1/6 6 /5 ( ),
r

h f L
3/ 4 4/3( ),g L 1/ 4 4/ 3

1( ),
r

h g L  0,..., ,r N

1/ 6 6/ 5 3/ 4 4 / 3( ),   ( ),
ir
M M

i ih f L g L 1/ 4 4 /3
1( ), 0,..., , 1, 2,3,

ir
M
i i ih g L r N i

then the static two-dimensional problem (14), (15) possesses a unique solution.
Along with the investigation of the boundary value problems corresponding to the obtained hierarchy of

two-dimensional models it is very important to study the relationship between the constructed two-dimen-
sional boundary value problems and the original three-dimensional one. In order to formulate the corre-
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sponding theorem let us define the following anisotropic weighted Sobolev space

1,1, 1 1 2
3 3( ) { ; ( ), ( ), 1,2, 1,..., },      ,s r r

h
H v v H h v L r s s N

which is a Hilbert space equipped with the corresponding norm

1,1, 1 2 2

2
2 1

3 3 3( ) ( ) ( ) ( )
1 1

s
h

s
r r r

H H L L
r

v v h v h v , s N .

Theorem 3. Let  be a Lipschitz domain, 0  be a Lipschitz curve with positive length, , , , ,

,  1 ,  2 ,  3 ,  4 ,  5 ,  6 ( )L , ( ) 0x c ,  ( ) 0x c ,  3 ( ) 2 ( ) 0x x c ,

( ) 0x c , 66 ( ) 0x c , 5 6 6| ( ) | ( )x x , 6 0const , 4 5 63 ( ) ( ) ( ) 0x x x , for almost

all x , and there exists 0 , for which the following condition is valid

1

2 2 2 2
1 3 2( ) ( ( ) ( )) ( ) ( )x x x x c , , R ,  a.e. in .

If 3 6/5
1( ) ( )i iff L , 3

1( )i igg 4/3
1( )L , 3

1( )M M
i iff 6/5 ( )L , 3

1( )M M
i igg 4/3

1( )L ,

6/5 ( )f L , g 4/3
1( )L , then the sequences of vector-functions Nu , Nw  and functions N  restored

from the solutions uN , wN  and N  of the reduced two-dimensional problems (14), (15), tend to the

solutions u , w  and  of the original three-dimensional problem (10), (11),

1

1
min 1 2 3

1

                   ( ),

                    ( ),               min{ , , , } .

                  ( ),

N

 in

in H as N N N N N

 in

N

N

u u H

w w H

In addition, if u 11,1, 3( ( ))s
h

H , 21,1, ( )s
h

H , w 31,1, 3( ( ))s
h

H , 1 2 3, ,s s s N , 1 2 3, , 2s s s , then the

following estimate is valid

1 11 0( ) ( )( )
min

1 ( , , , , , ),
( )N sH

o T h N
NN NH Hu u w w N

where 1 2 3min{ 1, 1, 1}s s s s , 0( , , , , , ) 0o T h NN , as minN .
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







  
  
       

 (     )









        

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