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ABSTRACT. In this paper initial-boundary value problem for multi-structure consisting of three-
dimensional body with general shape and multilayer part composed of plates with variable thickness is
considered. A hierarchy of dynamical models defined on the union of three-dimensional and two-
dimensional domains for dynamical three-dimensional model for the multi-structure is constructed. The
pluridimensional initial-boundary value problems corresponding to the constructed hierarchical models
are investigated in suitable function spaces. The convergence of the sequence of vector functions of three
space variables, restored from the solutions of the constructed initial-boundary value problems defined
on the union of three-dimensional and two-dimensional domains to the solution of the original three-
dimensional problem is proved and under additional regularity conditions the rate of convergence is
estimated. © 2014 Bull. Georg. Natl. Acad. Sci.

Key words: dynamical models of elastic multi-structures, initial-boundary value problems, hierarchical
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Elastic multi-structures are the bodies, which consist of several parts with different geometrical shapes.
Many engineering constructions are multi-structures consisting of plates, shells, beams and other substruc-
tures and therefore mathematical modeling of them is important from practical as well as theoretical point of
view. One of the first theoretical investigations of multi-structures was carried out by P.G. Ciarlet, H. Le Dret,
R. Nzengwa [1]. Applying asymptotic method they constructed and investigated a mathematical model
defined on the product of three-dimensional and two-dimensional domains for a multi-structure consisting of
three-dimensional body with a plate clamped in it. Multi-structures consisting of plates and rods were
considered by H. Le Dret [2]. Further, many works were devoted to mathematical modeling and numerical
solution of problems for elastic multi-structures (see [3] and references given therein). Different approach for

constructing two-dimensional models of elastic plates with variable thickness was suggested by I. Vekua [4],
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which was based on approximation of the components of the displacement vector-function of plate by partial
sums of orthogonal Fourier-Legendre series with respect to the variable of plate thickness. Note that I.
Vekua’s hierarchical dimensional reduction method is one of spectral approximation methods. Moreover,
classical Kirchhoff-Love and Mindlin-Reissner models can be incorporated into the hierarchy obtained by I.
Vekua, and so it can be considered as an extension of the widely used engineering plate models. Later on,
various investigations were devoted to the study of mathematical models constructed by I. Vekua’s dimen-
sional reduction method and its generalizations for elastic plates, shells and rods (see [5-7] and references
given therein).

The present paper is devoted to the construction and investigation of hierarchical models of multi-
structures consisting of three-dimensional body with general shape and multilayer part composed of plates
with variable thickness, which may vanish on a part of the lateral surface, applying spectral dimensional
reduction method. We consider variational formulation of three-dimensional initial-boundary value problem
for dynamical linear model of elastic multi-structure and construct a hierarchy of models in Sobolev spaces
defined on the union of three-dimensional and two-dimensional domains, when density of surface force is
given on the upper and the lower faces of multilayer substructure, on a part of its lateral boundary and on a
part of the boundary of elastic three-dimensional part with general shape, and the remaining part of the
boundary of the multi-structure is clamped. We investigate the existence and uniqueness of solutions of the
reduced pluridimensional problems in suitable weighted Sobolev spaces. Moreover, we prove convergence
of the sequence of vector-functions of three space variables restored from the solutions of the constructed
problems to the solution of the original three-dimensional initial-boundary value problem and if it possesses

additional regularity we estimate the rate of convergence.

For any bounded domain Q = R”, p >1, with Lipschitz boundary we denote by L* (Q) the space of
square-integrable functions in Q in the Lebesgue sense. H k (Q) , k>1, is the Sobolev space of order &
based on 12(Q), H*(Q) = (H"(Q))*, 12(Q) = (I2(Q))* and L*(I") = (Z*(I"))*, where I is a Lipschitz
surface. For any Banach space X, C° ([0,7]; X) denotes the space of continuous functions on [0,7] with
values in X, L*(0,T;X) is the space of such functions g:(0,7) —> X that ||g(t)|| v € L*(0,T) . We denote

by g’ =dg/dt the generalized derivative of g *(0,T; X).
Let us consider an elastic multi-structure, which consists of three-dimensional part with general shape

and multilayer substructure attached to it consisting of plates with variable thickness, i.e. elastic body with

- m _____
initial configuration Q = Q™ uUQ”l ,where Q = R* and Q™ = R® are bounded Lipschitz domains,
k=1

Qfl ={(x],x,,%x3) € R’; I (X, %0) < X3 <BE(x,%),  (x,X%,) € @},
y, cR?, k=12,..,m, are two-dimensional bounded Lipschitz domains with boundary Jaw,,
QM me[ =0, k=12,..m, h,f e’ (o) ACY (o, Wy,) are continuous on @, and Lipschitz con-
tinuous in @, and on 7, cdw, A (x,X%,) >k (x,%,), for (x,X,) € @, UF,, 7, <Oy, is a Lipschitz
curve, A (x,%,) =h (x,x,), for (x,x,) € 0w, \7,, k=1,2,...,m. The interfaces Wr\Q_,fl =W

between the three-dimensional part 0" «R*® and plates Q,’:[ are parts of lateral surfaces of plates
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Pl = (x e R Iy (0, 00) < x5 < (3,30) (3,0) € 70?1y y2P! < 7, ) k=1,2,...,m . The upper and
the lower faces of plate Q,’:[ , defined by equations x; = i (x,x,) and x3 =/ (x,X,), (x,X,) € @, , we
denote by T'; and T, respectively, and the lateral surface, where the thickness of QF is positive, we

denote by f‘k =6Qfl\(1";u1";)= {xe6(21’[;hk_(x],xz)<x3 <h{(x,%), (x5, %) €V} k=12,...m

The interfaces l"f’l,m , k=1,2,..,m—1, between neighbour plates Q' and Qf are the common parts of
the upper and the lower faces of Qk and Qk+] , respectively, T'}" k+] = GQ”I m@Qk+l ={(x,X,,%;) €eR’;

X3 :hlj(xl’xz): Iysi (x1,%) , when (x;,x,) € 0, Ny, k=12,..m-1}.

Let us assume that the three-dimensional part Q"¢ consists of inhomogeneous anisotropic elastic mate-
rial and the linear dynamical three-dimensional model of its stress-strain state is given by the following
system

o TH 60bd u’) )
bd O U; bd bd
= ; m Q™ x(0,7), 4y
P 2 (0,7)

Jj=1 J

where i =1,2,3, u? = (ufd )f:l is the displacement vector-function of the three-dimensional part, pbd >0
denotes mass density of the three-dimensional part in reference configuration, £’ = (£¢)? is density of

applied body force of the three-dimensional part, and 6%/ = (G )l =1 denotes linearized stress tensor of the

three-dimensional part of the multi-structure, which is given by

3
al[]’-d(v)z qu €,q(V), e,,(v)=(0v, /0Ox, +0v,/0x,)/ 2, where %pq (i, j, p,qg =1,2,3) are parameters
P,q=1

characterizing mechanical properties of the three-dimensional part Q.

[/
The remaining part UQ,f ! of the multistructure consists of plates Q,’:[ , k=1,2,...,m, with variable
k=l

thickness, which consist of anisotropic inhomogeneous elastic material, and their three-dimensional models

are given by the following systems

plkaZMp/k 3
P

J=l

+ P in QP x(0,7), Q)

where i =1,2,3, u”"* = (ulf’l’k )f:l denotes displacement of k-th plate Q,’:[ , p”l %> 0 is the mass density of

plate Q” in reference configuration, f?* =(f; ol k)l:l is density of body force for plate QP and

3
o/ = (G”l ky3 i.j=1 islinearized stress tensor of the plate QP which is given by 0”1 kvy = z alféqkepq (v),

Pq=1

i,j=1,2,3,where af}; Lk are parameters characterizing mechanical properties of the plate Q,’:[ of multi-struc-

gpq

ture.
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Let us denote by u: Qx (0,7) — R? displacement vector-function of the entire multi-structure () , which
equals to u? 0% x 0,7)—> R® in the three-dimensional part Q" | u equals to u?k :Qfl x(0,T) > R*
in the plate Qf ! of the multilayer part, k = 1,2,...,m . We assume that on the interfaces FZ‘/”’ ! between the

three-dimensional part Q* and plates Q,’:[ , k=1,2,...,m, rigid contact conditions, i.e. continuity of dis-

placement vector-function and stress vector, are valid,

3
ub =Pk, za "y, —ZGPIk(upl’k)nj on T0P % (0,1), i=1,2,3, k=12,..m, ()

3. . . / .
where n = (7;);_; isa unitnormal vector to the surface FZ‘/”’ ! On the interfaces l"f, r+1 between neighbour

plates Qf ! k=1,2,..,m—1, conditions of continuity of displacement vector-function and stress vector are

given
upl,k _ upl,k+] z pl, k(upl k)l’l _ zapl Jk+1 (upl k+1)n on rk a1 X (O,T) , (4)
Jj=1
where i =1,2,3, k=1,2,...,m—1, n=(n; )'}:1 is a unit normal vector of the surface I",ffk+1 .
The multi-structure Q , consisting of the three-dimensional part 0" and elastic plates Q7 ! L k=12,...m

is clamped along a part I', of its boundary, the density of the surface force is given on the remaining part of

the boundary, and the initial values of the displacement and velocity are given

Il
=}

on I,

iaij(u)njzgi on I'}, u
=1

u(x,0) = o(x), aa—l;(x, 0) =wy(x), xeQ, ®
where o;(u) = G (ubd) in Q" and o;(w)= Gplk(uplk) in Q" & =1,2,...mi,j=12,3, T isanele-
ment of Lipschitz dissection of the boundary I' = 6Q of the domain Q, ', =T \ﬂ, n=(n; )'}:1 is a unit
outward normal vector of I'j, @ = (gol-)?:] and y = (z,yi)f’:l are initial displacement and velocity vector-

functions, g = ( gi)f’:l denotes density of surface force acting on the boundary I'; of Q, which equals to

= (g )l _, on the boundary of 0" and equals to g”l’k

( g”l k)l _, on the corresponding part of the
boundary of Qf ! The clamped part of the three-dimensional part O of the multi-structure we denote by

24 | and the remaining part, where surface force is given, is denoted by l“fd =TI, Q™ . The clamped

parts of elastic plates are parts of the lateral boundaries

rkO = {(¥1,%, ;) € 0Q7'; By (x1,%,) <3 < B (x,%,), (0,%) €50 7\, k=1,2,.,m, and

the remaining part, where surface force is given, we denote by 1",’;’, =, GQfl .

The variational formulation of the dynamical three-dimensional problem (1)-(5) for multi-structure Q
consisting of three-dimensional body and multilayer part is of the following form: find the unknown vector-
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function u e C°([0,T];V(Q)), u’ e C°([0,T]; L?(Q)) N L*(0,T; V(Q)), which satisfies the equation

_iju()v dx + z [ g0y @ ey (Ve = ijvdx+z-[glv1dl" vev@Q, (©

i,j.p.4=1Q i=l O i=1 T,

in the sense of distribution on (0,7) and the initial conditions
u(0) =@, w'(0)=v, ™
where e V(Q)={ve H' Q)=(H ! (Q))3 ;tr(v)=0 onT'y}, ye | by (), tr denotes the trace operator

from Sobolev space H'(Q) to H'2(I'), f, = £ in e, f; = fP* in Q' and

ape (%), xeQh
i)~ g =12
Pk, e k=10, m, I PA=L23

The bilinear forms in the left and right parts of the equation (6) we denote by
3 3 3
RW.9)=D j T dr, AWY=D) j gy (W (V)dx, L(V) Z J' 1. vdx+z J' gv.d,
i=1 i,/,p.9=1Q i=l i=l T,
where W,v e L*(Q), w,veV(Q), p=p™ in @, p=p™* in Q' k=1,..,m
Note, that each vector-function ve V() from the space V(Q)can be represented as ;; +1 vector-
functions v and y?"! , vPh2 o vP"  which are restrictions of the vector-function v on the sets oM
and QY l Qé’l y s ijf , respectively. Consequently, the space V() can be considered as a space of the
vector-functions (v2,vZ vZ2 vy HY(QP ) x..x H'(Q?) , such that v*/ =0 on T¢, v?' =0 on
Ty, vW2 =0 on Ty, ..., v""™ =0 on T2, ybd —yrlkon TO9P |k =1,2,. m, yPl* = yPlk+l on
rﬁ,lkn ,k=12,...m-1.
In order to construct dynamical model of multi-structure € let us consider subspaces Vy () and
Hy (Q) of V(Q) and L*(Q), respectively, N :(N{’I’I,Nfl’l,Né”l’l,,..,Nlpl’m,N{’l’m, N{’l’m) consisting of
vector-functions with m +1 components vy = (V& vﬁ“,vﬁlz, Vi lm) where vﬁl’k is a vector-function

the i-th component of which is a polynomial of order le’l’k ,i=1,2,3, k=1,2,....m, with respect to the

variable x5, 1.e.

Va(Q) = {vy = ()i Vi = (VL VR VR vk, W e HY(QY),
Npl,k 1 1 rplk
Lk 1k 1k 1k /
Wi = z h_(’"ip +2j i P,,,k(zp )e H'(Q)),
ri””‘:O k
rplk

’

12 plk _ g2 plk o arplk plk _ plk
V=0 onTh, m2vE* e X (@), 0< M < NP WK =0 onT

bd _  plk b pl L+l _  plk 1 _ T
W =i on P k=1 m vt = on TP L i=123,k =1, m -1}

b
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Npl,k rplk
e N 1) bk 1k
Hy (Q) = {vy = )Ll € PE@D0E = ) h—(rl!’”’wzj &P (27),
riPLk:O k

rplk

B vgf Fel(wp), 0 <NPK i =1,2,3, k=1,2,..,m}>

R+ Ry Wi —hy

1k _ X3y
ahkz

where z"" = L h =
P k
K

L k=1..,m

Since functions 7 and 4, (k =1,...,m) are Lipschitz continuous in @, , then from Rademacher’s theo-
rem [8] it follows that 7 and J_ are differentiable almost everywhere in @, and o,/ € L” (e, ) , for all

subdomains @y , @, < @, @ =1,2, k=1,....m. So, for any vector-function v{"* =(v2*)} e H'(Q) the
rplk rplk
corresponding functions plk belong to H' (a)k) for all a)k, wk cw, i.e. vplk EHlo () >
C
0<rPF < NPM% i =1,2,3 . Moreover, the norms ||'||H1(Q]1:1) in the spaces H' (Q,f[) define corresponding

rplk

.+ for vector-functions \7””‘—(\/1’”‘) from the space [Hj.(o)] ",

norms ||

, and applying properties of Legendre

1,k 1,k 1,k 1,k 5
N/ = NPYE 4 NP NP 43 such that ”Vﬁ”kukaVﬁ"k

HH‘ (o7}

polynomials we can obtain their explicit expressions
NP NPLK Pk 2
1 1
aplk plk plk | Pl Pk po3/2 Pk
-3 3 (o2 S (ST A Uit I
i=1 k=g sPk =gtk 2@y
rplk 5 Nipl.k Splk
12 plk plk Pk Pk —\7-3/2 plk
S [ +Z Z s/ J(a = (=1 O P ™ i
Plog =
rplk plk 2
~h;'"%8, vplk+(rplk+l)h_3/26 Iy vgf * :
L (a)

where we assume that the sum with the upper limit less than the lower one equals to zero.

Note, that for vector-function v ”1’1 kelH) 1oc (@] Mizs , which satisfies the conditon “”’ b “k* <, wecan

plk

2043, of three space vari-

define the trace on 7, . Indeed, the corresponding vector-function v”l -

ables belongs to H (Q”[) and hence the trace tr(vplk) of vﬁfk on 6(2,’;’ belongs to H”z(@Q,f[)

rplk

i=1,2,3) . Therefore, for components v k" of vector-function v”l * the trace operator fr, ~on ¥, can
o ,

be defined as follows
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plk h+
1,k 1,k 1.k l,k 1,k .
1 OB = [ | P P, 0P < NP =123,
]

On the subspaces Vi (€2) and Hy (€2) from the original three-dimensional problem we obtain the follow-

ing variational problem: find wy € ([0, Tl;VN(Q)), wy €C °([0,T7; Hy (Q)) , which satisfies equation

Z j iy O Y. [ g ey (¥x (e (v et =

iL,j>P-4=1Q
®)
3 3
= ZJ.fl-vNidx +z J. gty (vn)dL, Vv € VN(Q),
i=l Q i=1 T,
in the sense of distributions on (0,7") and the initial conditions
wy(0) =0y, wi(0) = wy;, ©

where @y € Vy(©Q), yy € Hy(Q). Since the unknown vector-function wy of the problem (8), (9) in the

multilayer part of multi-structure is of the following form

Np[k 1 1 rp[,k
1
3 Lk _ 1,k 1k 1k . T
Wy = (Wn)ic> Wi =W = E (rp += jw” Pp,k(zp ) in QF, i=123k=1..m
e P 2 ’
I

hence in the sub-structures Q,’:[ the vector-function wy is defined by functions of two space variables
plk

WN, . Therefore, problem (8), (9) is equivalent to the following problem defined on the union of three-
dimensional and two-dimensional domains: find the unknown vector-function wy € C 0 ([0,77; VN (de”’ ! ),

wy € C([0,T]; Hy (Q"7")) , which satisfies equation

%RN (i (), ) + Ay (i (.3 = Ly (By), Vil e P (77, (10)

in sense of distributions on (0,7") and the initial conditions

Wy (0) = @y, WN (0) =yn, (11)

m
where Gy €y (%) = (i = (VA 35 i) €L @Y <[ [[H e (00015 ¥8 = 040,
k=1

R Rk
bd
troa (W ) =0, ||zplk —pl.k plk plk plk _ plk bd~\ _
s (R;) =0, “VN <o TG = OR,  OR) =0 = 0 NPt 00 =
Nipl,k 1 1 ripl,k NPLE 1 ] ripl,l?
1 — —
E 1,k !k IN S 2 1k 1,k
trr/’dﬁl h (’;P +EJV£I' Prpﬁk (Zp ) 5 k=l,2,...,m, h (’;P +Ejv£i =
k i - _
ri””‘:O k ripl,k:O 'k
PR pLk+
1

b

1 ™ 1 7 1,k +1 . —
h—(n””"” - 2Jv£f"+‘( D" inep mop, =123,k =12m -1}
pldn_o 41
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plk _ arplk pl.k pl.k bd,pl bdallalz
Niy3 =N "+ Ny " +N3 " +3, k=12,..m, '//NEH QP =iy = (i W

N VR VN e
3 m Nplk rplk
Nf 172 plk |2
aplﬂ’I)e[LZ(de)]SXH[L (@)1 ""N”H (@ =Z(|IVN1 ||Lz oy +z ; WA= vy ||L2((ok))<oo},
i=1 k=1 "

¢y and yy correspond to @y € VN (QQ) and yy € Hy (), respectively. The bilinear Ry (¥y,Vy)
Ay (PN, Vy) and linear Ly (Vy) forms are defined by corresponding forms R(.,.), A(.,.) and L(.), and
applying properties of Legendre polynomials we obtain their explicit expressions

rplkrpll\ rplk rpl/t

3 m 3 N
1 1
= o bd _bd_bd Lk ~plk
RN()’N,VN)=Z I P yNiVNidx+Zz Z (”p j( 7+ jj. Pplk ypfk"ﬁgkdwk,
i=1 qbd k=1 i=1 pPtk mrlk—o hk
rplkrplk h*’
where p”“‘ jpp’kazk(zk)P~pzk(zk)dx3 , 0 < Ptk bk < NPUK 32123 k=1,2,...,m , thebilinear
hk

form Ay (¥y,Vy) is given by

A (yN’VN)_ Z J. qu pq ) (V )dx+

i,j,p,q=1 b7

m lel;){c 1 rp[krpl k rp[ k rpl k
plk ~p1,k plk k = k o=
+Z Z (7’ +5J(r aszq pq (yN) eij (VN )dwk’
hk ij, pq 1

k=1 pPIE FPlk —q

where N/UF = max{N”l %
1<i<3

r r NPLE r r
- 1 7k 1.k
&) () = 5| ;08 +0, 04 )+Z(d1’”‘v§]”‘+d;;”‘v§f") . ENUIOL

s=r

. 1
d_pl’k I"+

ahk, dz{v)lk _hL(s+%)(al—hk (1)r+Sa hk)+_[s+ )(1 (1)r+y)L§i—2)’

k k k

Pk R Jplkplk R
plk plk !k Lk INS NS INS
for s>r, and v" =y§" =0, for NPU <™ <N, aly = | af P (2) P (24 )dxs,
I

i,j,p,q=1,2,3, 0< PPk FPLk < NPLK p—1 2 m.Thelinear form Ly (Vy) is of the following form

max °

Ly(y) = 23: J. ﬁv{igdx +Zsl J. gy, (V{iff )drI' +

i=l qbd i=1 r{)d
m 3 N[p/./( | | p[/t rp[/z y . p//t rp//t
plk 1 plk plk plk,+ plk,— P plk plk
DI ( +2j jh i S g g R DT Jdo | i g
k=1 i=1 r[p"":o k k

Yk,
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r}pl,k h]:'
where }/k,l = }7/( \yllc]d’pl Uyk,O 5 A'k,i = \/l+(a]h/:£)2 +(62h/:£)2 5 fjpl’k = J- fpl kaIk (Zk)dx3s (x x2)
hk

= g;(x1,%,,x3), for (x,,x,,x;) e} NI # and g{’l’k’J'(xl,xz):O, for (x,x,,x3) e\ Ty,

plk (xlaxz) gl(xlaxZax3) for (xlaxZaxS)erk r\1—‘1 7&@ and gplk (x x2) 0 for

Pl plk
(5. %.33) €T \Ty, gt _ J < PosGdx ik _g NP j210.3, k=12,

The obtained hierarchical models (10), (11) are pluridimensional models written in variational form of multi-
structure consisting of three-dimensional body with general shape and multilayer part composed of plates,
and for corresponding initial-boundary value problems the following existence and uniqueness theorem is
valid.

Theorem 1. Let the three-dimensional part O™ with general shape and plates Q) ! k= 1,2,...m, are
such that the domain Q occupied by multi-structure is a Lipschitz domain, the parameters characterizing
mechanical properties of three-dimensional part al]pq e ”(QMy, i, Jsp-q =1,2,3, satisfy symmetry and

positive definiteness conditions

3
- bd 2 bd _
Ay (X) = i, (x) = dpgy (), z Qg (V)E;6 5 2 g 2(%) » VxeQT.e;eR g =6y, (12)
i,jp-q=1 i,j=l1
iLj,p,q=123, ¢ =const>0, and p" e L*(Q"), p™ >c=const>0, and coefficients
rplkrpll\
If,iqk Ih € L™(wy), pPbk ek =, . Nrﬁ{af, k=1,2,...,m, defining two-dimensional models of plates

satisfy the following conditions

~ plk ~plk ~plk .plk
JPLkgplk  plkgplk L plkzplk  splkplk  pPhkg Rk,

plbk _ _plbk _ _plk _ _plk plk _  _plk . . _ plk ~plk _ plk
az]pq = a]zpq = az]qp = az]pq > P =p slstPsQ—1,2,3,7’ s =0,.. Nmax’
leqf 3 1 1 1 VpIkVpI k pPLk oLk Nmax 3 1 pPLk Pk
| ek 2| gtk L alplk 6 Epy 20 z z ppbk L & €, mn @,
h 2 2 upq rq 2 y -y
PPIE P =01, pag=1 rP=0i, =1
rpl,k;pl,k

1k :
P Sk Pk

forall & eR, & _gﬂ,lj,p,q=1,2,3, a=const>0, ,Dpl’k/hk e L”(w,),

rpl,k;;pl,k
Ik~ 5 bdply - 5 b, pl
pPlk /hy = c=const>0,r" Pk =0, N,ﬁéf,k=1,2,...,m Jf @y € VN (Q79F), iy € Hy (™)
rplk rplk

plkt

and given functions f;, gl,f.p”‘, g/ and gp”‘ are such that

£, e 20T 12 Q)), g,.g € I2(0,T; L3 ([0)), i=1,2,3,
rplk

h—]/2 fplk €L2(0 T: LZ(a)k)) )L«/i/.:‘glplk’i 13/4(gplk’i),ELZ(O,T;L4/3(wk)),
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rpI k rpI k
B P B (PR € 22(0,T5 L () =0, NP i 1,23,k = 1,
then initial-boundary value problem (10), (11) defined on the union of three-dimensional and two-dimen-
sional domains possesses a unique solution.

For the considered multi-structure consisting of three-dimensional part with general shape and multilayer
substructure composed of plates with variable thickness the relationship between the original three-dimen-
sional model and the constructed hierarchy of pluridimensional ones is investigated. In order to formulate the
corresponding theorem let us define the following anisotropic weighted Sobolev spaces

H) (@) = {v; W olve Q') p=0,1,....s}, seN,
k

H Q) = (v;of 've H' Q) p=1,...,5, 0, h¢ O3v e LP(Q)),a =1,2,r =1,5,min{2,s}}, s €N,
k

where k =1,2,...,m, which are Hilbert spaces with respect to the following norms

1/2
p
"V”HZfJ(Q”[ Z“h LZ(QPI s
&
s 2
Moy =| 2008 M, + 225Vl o, o2y
H () 3w 2@ e By LZ(QP1
k p=l a=1
1/2
s s mm{25, mm{23\
6 1) a 2 “6 hk V 2" “6 hk V 2. p! .
12(0) 120! 12(0) 127

The following theorem is valid.

Theorem 2. Let the parts Q™ and Q,f[ , k=12,...m, of the multi-structure are such that Q is a
Lipschitz domain, the parameters characterizing mechanical properties of the general three-dimensional
and multilayer parts af]’pq e L”(QM), alf}iqk el” (Q,fl), i,j,p,q=1,2,3, satisfy symmetry and positive
definiteness conditions (12) and

3 3
Lk N _ phke N _  plk Lk Lk 2 pl _
abyr (x) = aly (x) = ah i (x), z aby ()€€ ,, 2 cf 2(817) , VxeQp,e; eR g =6y,
i,j,Pq=1 i,j=1
Lj,pg=123, M =const>0, pM el (QM), p" ey,  pzc=const>0,

P >c=const >0, k=1,...m, and felI*(0,T;1*(Q), g.g € *(0,T;L"*(T))), ¢ V(Q),

Jo)
ye 1 (Q). If vector-functions @y € V() and yy € Hy (), which correspond to ¢y € VN (de’p 1)
and iy elj]N (QPP'y tend to © and W in the spaces H'(Q) and 1?(Q), respectively, as

N = 1<k<r£11i1]1<l_<3{Nl-"’l’k} —> 0 or hy, =max{h (x,x,);(x,%,) € wk,k=1,...,m} =0, then the sequence

of wvector-functions Wy(t) = (wy; (t))f:l eC’ ([0, T]; VN ()  restored from the solutions
wy €C 0 ([0,77; VN (de’p ! )) of the constructed problems (10), (11) defined on the union of three-dimensional

and two-dimensional domains converges to the solution u(t) of the three-dimensional problem (6), (7),
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wy () = u(?) in V(Q),

. 2 VlE[O,T], as Nvmin_)Oo or hmax_)o‘
wi (t) > u'(?) in L7(Q),

Moreover, if u satisfies additional regularity conditions d" (u | o7 Y/ dt" e I*(0,T; H;’ (Q,fl ), r=0,1,
k k

d*(u |Qf,)/dr2 e I2(0,T; Hj;f""z Q) , 50,58 €N, 5,22, 522, Qlop € H]h;" Q"), 5,eN,

5022, Ylyne HL’L' (Q,fl ), k=1,2,...,m, then for suitable initial conditions ¢y and yy of the initial-
k K

boundary value problems corresponding to the hierarchical models the following estimate is valid

2s
h
o' )= WA @2 ) + 8O - Wy Ol ) < [ . J S(T. QT N), vie[0,T],

min

where s =min{s,,s, —1,5, —1,5, =1} and 6(T,Q,T';,N) > 0,as N ;, > .
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