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ABSTRACT. The problem of European Option hedging is considered. The integral type option is
investigated in the case of Bachelier financial market model. We solve this hedging problem using the
local time of the risky asset price process and its relationships with the payoffs of option. At first, we give
the Clark stochastic integral representation formula in an explicit form for the local time and then we
use the Trotter-Meyer Theorem and the Fubini Theorem of stochastic type. It is well known that the
Clark-Ocone stochastic integral representation formula is the effective tool for solving of hedging
problem. But in our case there are some difficulties to use this formula directly, because integrands of
integral type payoffs are not differentiable by Malliavin. In the Malliavin theory it is well known that the
indicator of event 4 is Malliavin differentiable if and only if probability P (A4) is equal to zero or one.
Hence, for all ¢ the indicator / {a<w,<b} does not have Malliavin derivative. We prove that if the square

integrable random process is not stochastic differentiable, then the “average” process is not stochastic
differentiable either. For the check of the mentioned proposition we use one result proved by us: if square

t
integrable random processes 1/, has the Wiener-Chaos decomposition with kernels -) , measurable
g p ¢ u,n

in all their variables, then the average process with respect to dt has the Wiener-Chaos decomposition

t
with kernels coinciding with the average of fu " (-) with respect to dz. Moreover, we need calculation of

some integrals connected with the normal distribution and for completeness of a statement we give
calculation of these integrals in Appendix. © 20/4 Bull. Georg. Natl. Acad. Sci.

Key words: Bachelier model, Clark-Ocone representation, local time, Trotter-Meyer theorem, Fubini theo-

rem, hedging problem.

We consider the European Option of integral type in the case of Bachelier market model. We develop the
method of hedging of this option based on the application the local time of the risky asset price S. We give the
Clark representation of local time and then using the relation between the payoffs of option and local times
based on the stochastic type Fubini theorem we obtain the Clark integral representation of payoffs of our
option. Therefore we solve the hedging problem. The method will be useful in the cases, when there are
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Hedging of European Option of Integral Type 5

difficulties to use directly the Clark-Ocone integral representation [1, 2].
Let on the probability space (€, 3, P)be given the Wiener process w=(w,), ¢ <€[0,7]and(J}"),
t €[0,T]be the natural filtration generated by the Wiener process w. Consider the Bachelier market model
(see, for example [3]) with the risk-free asset price evolution described by
B, =1, )]
and risky asset price evolution
ds, = pdt+odw,, Sy =1, 2
where 1 € R is appreciation rate and o > 0 is volatility coefficient.
Let

1 2
Zp =expl-Ew, ——(EYTy
o 2 o

and Pr is the measure on (Q, 37 ) such that
dPr = Z;dP .
From Girsanov’s Theorem [3] it follows that under this measure (martingale risk neutral measure)

W; = Wt +ﬁt
(o2

there is the standard Wiener process and
ds, =odw:, S;=1 3)
or
S, =1+ oW .

Consider the problem of “replication” the European Option with the payoff of integral type
r 2
G:jl{ags <pyo )
0 t

(where a and b are some positive constants, a < b), i.e., one needs to find a trading strategy (5,,7,),

t €[0,T]such that the capital process

X, =BB +y,S;, Xr=G ©)
under the self-financing condition
dX, = B,dB, +v,dS,. 6)
From the relations (3), (5) and (6) we have
T _
G=Xp=Xy+|[oydw- @
0

Our problem is to find the trading strategy (8,7) = (B;,7,) , t €[0,T]. It is well-known that this problem

is equivalent to finding a martingale representation of the payoft G with explicit form of integrand. Note that

G is square integrable but not differentiable in Malliavin sense functional of Wiener process w= (v_w),
t €[0,T] and therefore we try to obtain the Clark integral representation with known integrand applying a

nonconventional method (because the Clark-Ocone’s well-known method here is not applicable).
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Consider the local time of stochastic process S, , ¢ €[0,7]. By the definition ([4], IV.44.1) local time of S
at the point x e R is
t
[ (S) =S, —x|=1So—x|-[sgn(S, —x)dS, . ®)
0
For any measurable and bounded real function @(x) ([4], Trotter-Meyer Theorem 1V.45.1) the following
relation is true

T 0
[@(S)d(S), = | I7(S)e(x)dx ©)
0 —o0

where (S), is the predictable square variation of the martingale S, , t €[0,7].

Suppose that
P =Ly < x<by-
Note also that, according to the Ito’s formula
dS? = o’dt +20S,dwi,

and, hence,

(S), =c’t.

Further, from the relation (9) we obtain

T 2 b X
({I{aéSt <p0 dt = [17(S)dx (10)

Auxiliary results
In the Malliavin theory it is well known that the indicator of event 4 is Malliavin differentiable if and only if
probability P (4) is equal to zero or one (see Proposition 1.2.6 [5]). Hence, the indicator 7 (a<w <b} has no

Malliavin derivative. We prove that if the square integrable random process is not stochastic differentiable,
then the “average” process is not stochastic differentiable either. At first we will formulate one result proved
by us:

Theorem 1. If square integrable random processes u, € L, ([0,T]x€Y) has the Wiener-Chaos decompo-

T

o0
sition u; = . 1, (f1 () with kernels, measurable in all their variables, then the average process [ u,dt has
n=0 0

the development

T © T
[udt="3 1,([ f,()dr).
0 n=0 0

Theorem 2. Let the square integrable random processes u, € L, ([0,T]xQ) such that for almost all

T
t €[0,T] the random variable u, does not belong to D, ;. Then the average process [u,dt is not in the
0
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space D, .

Proof. For almost all # €[0,7] u, is square integrable random variable, and hence it has the Wiener-Chaos

decomposition
=3 1,(f, (),
n=0

where the deterministic kernels f!(-) are symmetric and depend on the parameter ¢. Using the standard

approximation technique to the process u, in L,([0,7]x€Q) by a sequence of simple processes, these
kernels can be chosen to be measurable in all their variables. Hence, due to Theorem 1 we have
T w T
[udt =3 1,(] f,()dt)
0 n=0 0
Further, according to the Proposition 1.2.7 [5], the series
< (
E} nnl| f, () ”L2([O, e
is unconvergent for all ¢ €[0,77].
On the other hand, according to the Fubini theorem, we can conclude that the series
Il t
LA0,TT") dt = (I)L% nalll f, () ||L2([0, T]n):|dt

is also unconvergent, because otherwise we obtain that

o T
> [nnl]l £ O]
0

n=1

S t
HZ::]""!H Jn (')HL2([O,T]”) <o

for almost all ¢ €[0,77].
Therefore, using again the Proposition 1.2.7 [5], we easily ascertain that the theorem is true.

Corollary. Since the indicator function [ (asw;<b) does not belong to D,  forall 7 € [0,71], hence, for all

real number a <b

T
1 dte D
Mg <, <pydt £ 0oy,

Below we need calculation of some integrals connected with the normal distribution, whose value will be
given below in the form of propositions. For the sake of complements, we included a proof of these proposi-
tions in the Appendix.

Proposition 1. For any constants ¢; € R, ¢, >0and ¢ > 0 the following relationships are fulfilled:

)

x+C'1 X+C'1

B
[ @, ( Ydx =[(x+¢)P,; (
a %) 5}

ne.

x+Cl
)+ ( B

2

ii)

B
J 300, (Eydx = 2162 — )y, () + ex, 11
c 2 c c

o
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Proposition 2. The following relationship is true

T T

Integral representation theorem and hedging of the option

E|wp —x |= x[20¢ ; (<=) ~ 1]+ 23Ty (=)

Now we investigate the hedging problem of European Option with payoff

T
U=Ilass <, (11)

where
S, =1+ ut+ow,
is risky asset price and risky free asset price B, =1, i. e., we consider the Bachelier model. Note that Uy is

really the occupation time of (a, b) up to time T of risky asset process S.

. = = . — . 1
Under the martingale measure P ( P ~ P andissuch that [3] ¢ P = Z,dP with Z; = exp {—ﬂ wp — 5 (ﬁ)2 T})
o o

is the standard Wiener process and
S, =1+ow. (12)
From (11), using (12), we have

4t (13)

According to the Trotter-Meyer Theorem ([4], Theorem IV.45.1) for any measurable and bounded real
function ¢@(x) the following relation holds

T 0
[0(S)d(S), = | I (S)p(x)dx ,
0 —o0

where (S), is the predictable square variation of martingale S and /7(S) is the local time of S at the point

x € R . If we take here @(x) = I{anSb} , then for the Wiener process we obtain that

=N
dt = '[ IF (w)dx , (14

<w, <
swes (a-)/o

L
o2
where l7 (;/) is the local time of the Wiener process w at the point x € R .
It is well known ([6] or [4], Tanaka’s formula IV.43) that the local time of the Wiener process admits the
following representation:

T
I (w) =l wr —x | = | x| =[ sgn(we = x)dw; . (15)
0

Theorem 3. The local time of Wiener process admits the following integral representation
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T - T
17 (w)=E| wr - x|—|x|+j{1 20, (C—=0)}dwi — [ sgn(wi - x)dwi (16)

VT-

where

E|wr —x|= x[20q  (==) ~ 1]+ 2Ty (== (17)

N N

Proof. Due to the Clark-Ocone integral representation formula [2], we have

|wr —x|=E | wr — x|+J.ED(|wT )| 3y Jdwe
0

Using the relation ([5], Proposition 1.2.4 or [7], Theorem 2)

D,(|wr —x|)=D,[(wr —x)" +(wr —x)"]=

{WT>‘C} I\vivr <x}

the integrand of the Clark-Ocone integral representation we can rewrite as

EID,(wr —x))| 3= Ell 31— Ell - 3= Jy -,

{wr=x} | {wr <x} |
According to the well-known properties of Wiener process and conditional mathematical expectation it is not

difficult to see that

=l 5= Ell

{wr2x} R fwr —wy+wy 2x} |Wt] - E[ {fwr - Wt+y>x}] |y Wi

— - X — Wt
=P{wr —w; 2 x -y} |y:;,, =1-@g 7 (x~») |y:7w= 1-®, [—J

N7

Analogously, we can verify that

— E[l - X we
Jy=El 15 CD‘”[\/T——J'

Combining now the above obtained expressions and using the relation (15) and Proposition 2 we easily
complete the proof of theorem.

Theorem 4. The following integral representation formula is fulfilled
pa— T [e—
U=EU+|[Ldw.
0
where E() is mathematical expectation with respect to P ,

U = (% + T)®q (—) + Ty (- — - xsgn(x) + 17} (2010 (18)
T T2 (@b

and

W i x—w X—w, _
= el = sgn(we = )] = 20— we )Py (=) = 29T ~ 13 ( S)} |22711))§(; )

JT-t T -t

Proof. From (14) using the relations (16) and (17), we obtain that

(b-1)/ o
U= (X200 1 (—=)~11+24T g 1 (=)l +
(a—lj)/a O RN

Bull. Georg. Natl. Acad. Sci., vol. 8, no. 3, 2014



10 Omar Glonti, Omar Purtukhia

b-1)/o T — _
+ [ An-o= J—) sgn(wr —x)[dwy }dx

(a-1)/o 0
Fubini Theorem of stochastic type ([6], Lemma I11.4.1 or [8], Corollary of the Lemma IV.2.4) give us possibility

to have the following representation:
(b-1)/c
= I s f)+2f 90, (—= f) (r+ | x v +
T (b-1)/o —
[t | D@ = \/_) sgn(w —x)]dx}dw;

0 (a-1)/o

Using the Proposition 1 ii) with a =(a—1)/c, B=(b—-1)/0c and ¢ = JT wehave

é-bio b-1)/o b-1)/c
L o = (0 Dy ﬁlﬁa D +Txn (= ﬁlﬁa 0o,
Further, it is easy to see that
b-1)/oc (- 1)/0 d b-1)/o
2 dx=2 [ dx =2TD
« {)/O- f¢01(f) X = \/— \/—(a 1)/0dx 01(\/—)] 01(\/—)|(a 1)/0-
Moreover, we have
(b-Dle 1 (b-1)/c

(a_lj)/a(x+ | x)dx = Ex2[sgn(x) +1] |(a—l)/0' )

On the other hand, due to the Proposition 1 i) witha =(a-1)/o, B=(b-1)/0, ¢ = —wr, ¢ =~NT—t,

using the relation

é-Dio (b-1)/c
(a—{)/o' sgn(c — x)dx = xsgn(c — x) |(a /o

it is not difficult to see that
b-1)/oc —w _ B b
L) sgn( )l = e wseno -0 7D/

[ [I=Dg,(
(a-1)/o T NT -t

ey, G (Bl g, (2 (e

Combining now the above obtained expressions we complete the proof of theorem.

In the conclusion we notice that the components of hedging strategy are: y, = Lt /o and

ﬂt =X, -7, S pE where the capital process
— t [e—
X, =EU +[Ldws
and the price of this option is defined by (18).
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Remark. Here we do not consider the problem of choosing constants a and b. We note only that if

b <1, then (x+|x\j4-1y/c.(b-1)/01(X) = 0 and therefore the price of our option will be equal to

(b-1)/c

EU = {(x +T)(D()1(\/_)+Txg001(\/_)}|(a /o -

Appendix

Proof of Proposition 1. i) Using the integration by parts formula, due to the well-known properties of the
integration, it is not difficult to see that

B x+c x+c 18 x+c
] @01 C—Lydx =[x 1B =T gy -y =
a ] ] ©a ]
X+c
=[x, (L)1 ——J(x+c1 — )0 (- s =
%) € a
xtaq .8 . ° X +c B x+e ., x+q
=[x®@g, ( N, +ex [ e, ( N+c | @o,l( Yd(——) =
] a ) a )

tay) |ﬂ

=[(x+01)‘1’0,1(x )+Cz¢01(

(59)

ii) Analogously, consecutively using the integration by parts formula, we easily ascertain that

B B
[ 300, (Syatx = LT, B (x2) = L1y, (116 -
c 24 c 2 c

18 1 1A
“5el 5 (e = 2Ly (N +2c [xdlpn, =
1
[x o, 1y [xqom( Nl e I%l( (%) =
=162 =)0 )+ xS

Proof of Proposition 2. By the definition of mathematical expectation, due to the well-known properties of

normal distribution and integration, we can write

u2
E|wp—x|= j|u x|exp{— }du=

«/—

1 u? 1+ u?
Nz I (x—u)exp{- —}d N ){ (u—x)eXp{—ﬁ}dF

2

{——} = —)—

= XD 7 (x) + ——

J—

2 2
u

—% J expi= 21— 1)1 -0y (9] -

X
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= x® 7 (x)+ Ty ) [, ~Tpy 7 () [1° —x[1 =D 7(x)] =

= {20 (=)~ 11+ 2T, (iT) .

N T
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