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ABSTRACT. Heyting algebras have been investigated by Arend Heyting as semantics for intuitionistic
Logic. The connection between heyting algebras and some types of categories(logos, topos) was noticed
A. Grothendieck . Hence it was noticed that the extension of intuitionistic logic with modal connectives
can be modeled by Heything algebras with additional operators. Connection of such extension with
topological models for Heyting algebra has been investigated by L. Esakia and H. Ono. Heyting algebra
with two operators, which was a model for a particular modal logic was constructed by H. Ono. In this
paper the attempt was made to construct Heyting algebra with two operators in special categories, called
logos, and to show the connection of this construction with H. Ono modal logic. © 2014 Bull. Georg. Natl.
Acad. Sci.

Key words: Heyting Algebra, logos, category theory, modal logics.

Heyting algebra H (also called pseudo-Boolean algebra) is a poset with all finite products and coproducts,
which is Cartesian Closed (as a category with products). In other words, Heyting algebra is a lattice with 0 and 1

which has for each pair of elements x, y an exponential y*. This exponential is usually written as x = y . By
its definition it is characterized by the adjunction:
zS(x:>y) iff zAax<y.
In other words, x = y is the least upper bound for all those elements: with z Ax <y in particular, then
y< (x = y) . Thus, in the usual picture of a partially order x = y lies above y.
In Boolean algebra for all x, y and z
zS(—vay) iff zAax<y.
Proof. Only if
Z/\xS(—vay)/\ng/\xSy.
If

z:Z/\IZZ/\(—vax):(Z/\—Lx)v(Z/\x)S—vay.
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Hence Boolean algebra has exponentials given by (x = y) =—x Vv y. Therefore every Boolean algebra is

Heyting algebra. The converse does not hold, for example, the open sets in the real line form Heyting algebra,
which is not Boolean.For any topological space X, the set open (X) of all open sets in X'is Heyting algebra.
It is a lattice (under inclusion) because binary unions and intersections of open sets are open, as are the sets

@ and X. For two open sets U and V' the exponential {7 = J/ can be defined as the union UW, of all those

open sets W, for which W, WU < V. Then because intersection is distributive over arbitrary unions:
(W)U =u(W,.nU)cV.

Therefore UW, =(U = V).

A similar argument will show that any complete and (infinitely) distributive lattice is Heyting algebra.
(Here, a lattice is said to be complete when, regarded as a category, it has all small limits and small colimits, i.e.
all small products and coproducts.)

Next we will introduce intuitionistic modal logic M, (H-intuitionistic logic). The intuitionistic modal logic
M, is obtained from the intuitionistic propositional logic H, by adding the following axioms:

) op=>p 1) p=0p

2) op=oop 2') ¥op =0

3) o(p=q)=(op=nq)

4 o(p=q)=(%p=0q)

5) O(pvq)z(Ovaq)

6) Op=o0p 6') Oop=op

7 (Dp :>Dq) 3D(Dp 3Dq)

Rules of inference of M, are modus ponens, the rule of substitution and the rule of necessitation, i.e.

from A infer 0A4.

Let us take a one-to-one correspondence between propositional variables of M, and monadic pre-
variables. For each proposition variable p of M,,, p" (x) denotes the monadic, predicate variable corre-
sponding to p. Also, we fix an individual variable x. Now ¥ is defined as follows:

) w(p)=p (x) ifpisapropositional variable

) y(4rB)=y(4)ry(B)
3) y(4vB)=y(4)vy(B)
4 y(4=B)=y(4)=v(B)
5) v (—d)=—y(4)

6) v (od)=Vay (4)

N v (OA) = EIxt//(A)

Theorem 1 ([2]). A formula A is provable in M, if and only if v (A) is provable in H (int. log.).
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Now we will introduce algebraic semantic for modal logic.

Definition ([1]). An algebra A = <A,v,/\, —,1,C,0, 1> is said to be a bi-topological pseudo-Boolean
(Heyting) algebra (bi-tp Ba) if
1 <A,v,/\,—>, 0, 1> is pseudo-Boolean (Heyting) algebra
(V) for each xand ye 4

0 I(xny)=knly (i') C(xwy)=CxuCy
()  Ir<x (i) x<Cx

(i)  Ix=1Ix (iii') Cx=CCx

(v) =1 (iv) €0=0

V) kol (V') I(x>y)<Cx—>Cy
(Vi)  CIx=Ix (vi') ICx=1Ix.

An assignment of bi-tpBa A is defined in the usual way. In particular, for each assignment f of A4,
f(n4)=1f(4) and f(0A)=Cf(4).Amodal formula 4 is said to be valid in a bi-tpBa, if /(4)=1 for
every assignment [ of A. The set of all modal formulas valid in a bi-tpBa 4 is denoted by L (4). Clearly, L (4)

is closed under modus ponens and the rule of necessitation.

Fact (1) ([1]).
1) Foreachbi-tpBad L(A4)>M,.

2) For each formula ¢ suchthat M, = ¢ there exists a bi-tpBa 4 such that ¢ ¢ L (A) .

Construction of Heyting Algebra with Two Operators

Now we will try to construct (for any b and X) from Heyting algebra Sub, (X ) abi-tpBa first define a monadic
Heyting algebra (A, v,A,—,1,C.,0, 1> with all properties similar to bi-tpBa exept (V') instead we have :
(V") C(p/\Cq)z CpnQq.
Proposition. /n any monadic Heyting algebra p < q implies Cp < Cq .
Lemma. Any monadic Heyting algebra is a bi-tpBa.

Proof. After definition of —» wehave

r<p—gq iff par<gq. 1)

From Ip < p ((ii)) we have I(p - q) <p—gqsofrom(l) p /\I(p - q) < g using Proposition II we get

C(p A I(p - q)) < Cq . Property (vi) (Clx = Ix) gives us C(p A Cl(p - q)) < Cq using (V") and (iii)

we get CpA Cl(p — q) <(Cq and again use (vi) Cp/\l(p - q) , so applying (1) we have

1 ( p—> q) <Cq — Cq and proof is finished. Now define in any logos C for any object X a construction

<Subc (X),V,A,—>,I,C,J_X,Tx> , where we take I, Ctobe f'oV £, fo3f (f:X —>1 map from X to
terminal object).

Theorem 2. <Subc (X),v.A—,1,C, L, Tx> is a bi-tpBa for any X.
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Proof. Let us write the adjointness properties in the following form:

p</"(q)
m @
p<Vf(q)
F(p)=q ™)
Now proove properties (ii), (ii') of bi-tpBa
(i) p<Cp e p< 3£ (p) (<= meansequals) < 3 f(p) <3 f(p) (used (1));
(i) p<pe fVip<peaVf(p)<V[f(p) (1)
Proof (iii) and (iii)
(iii") CCp=Cp < CCp=Cpand CCp = Cp
CCp = Cp follows from (ii')
CCp<Cp< '3[ fp < '3 fp & (<« means follows from) «
<3/ '3f(p)<3f(p) (these we use the fact that £~ is functor between posets) <
o f3f(p)</37(p). (1)

(i) is similr.
Proof (i') and (i).
(i') C(pvq)=vaCq<3C(pvq)Svaannd C(qu)ZvaCq.
C(pvq)=CpvCq<s [3f(pvq)= "I fpv [ fgbecause pvg>p and pvgq=>gq,sousing
the fact that /' and 3 f are functors we have /'3 f(pvq)> /'3 fpv 3 fq (by definition of \/)
f3f(pva)< 3V 3fa=3f(pva)<3f(p)v3fie)e

<:>(by (1))@pvqﬁf’l(ﬂf(p)vﬂf(q))cpvqﬁf’lEIf(p)vf’IElf(q)@
& pvgsCpv (g,

but we have from (ii') p<Cp and ¢<Cq so pvg<Cpv(q.

(i) Similar in proof of (i') we used the fact that f~' preserves v this follows from more general
proposition that £~ is Heyting algebra homomorphism.

Proof (iv') and (iv).

(ivV)CLl=L e f'3f1l=1L e f'3fL <l and f'3f L > . f'3f L > isclear,

ALl o M3 L= (L) (because £ is Heytinghomomorphism) <

e3f Lt (by (1)L (L)sL,

g.e.d.

(iv) is similar.

Let us prove now (V) and ( V') .
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(V) lpoIg<I(lp—>lg) e f Y o>V fa<fVI(f Vo> rVfg)e

SV Y fg) S
SV oV <V (Y > Y f) (by (1)<
S (YY) o Y fg
S[NP->YIa< >V fg.

(v') Instead of (v') we prove (v") from which (v') follows:

C(pACq)=CpnCq f13/ (p s 3fg)=f"3pAS "3 Sy =
<3f(paf'3f)=3 A3 10,
which follows from Proposition I, ifwe take / = p and 3 fg=3 fp.
(Vi) Clp=Ip< Clp>IpandClp < Ip so Cilp > Ip is clear (by (ii') ).
Cp<hps VIV R<fV e
IV Vp<Vpe (b(l)e
< VPV .

The proof of (Vi') is similar, and so the whole proof of theorem is finished.
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