LSJSHM3IKVML 33B60IBIBSMS IGMIEIRO S35KJF00L 9MS3I, &. 9, Nel, 2015
BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol. 9, no. 1, 2015

Informatics

Solution of Minimal Set Partition and Set Covering
Problems

Natela Ananiashvili

Faculty of Exact and Natural Sciences, 1. Javakhishvili Thilisi State University, Thilisi

(Presented by Academy Member Mindia Salukvadze)

ABSTRACT. The article considers solution of minimal set partition and set covering problems. As is
known, the problems of minimal set partition and set covering belong to the class of complex NP problems.
The efficient algorithm for precise solution of such problems does not exist nowadays (except in private
cases). Solution time depends on a scale of the problem and it may significantly increase with it. A tree
algorithm of simplified search is used. It became possible to decrease volume of occupied memory
approximately 32-M-times with non-essential elaboration of programming techniques and computational
time decreased approximately 32-M-times, where M is a number of covering subsets. For this purpose,
partition matrix was compactly written and then basic operations were performed on columns of the
matrix with logical operators. A complex of programs was developed in algorithmic language C++ and
realized in Dev-C++ environment to solve these problems and check them on tests taken from OR-
Library and real combinative problems that are known from the literature. The results are satisfactory
and given in reasonable amount of time. The proposed complex of programs may be used for solution of
the other problems of graph theory that can be deduced to problems of minimal set partition or set
covering, or they are the sub-problems of such problems (for instance, problem of searching of dominant
set of graph nodes). © 2015 Bull. Georg. Natl. Acad. Sci.

Key words: set covering, set partition, precise solution.

1. Introduction k

Us, =& 0
In the problem of minimal set partition we have finite =1
and

S, NS, =®Vhic{l2. .k}, hzl. Q)

set R= {rl s Pyyenns rN} and collection (family) of sub-

sets L={S],S2,...,SM},SJ-CR,j=1,2,...,M,
)) We must select the subset, where sum of weights
where each §; hasnon-negative weight ¢; > 0. Any

Z],k ¢;. isminimal. The problem of minimal set par-
subset (family) L' = {SjI S0 S } from L is called i

.) . . tition is often written as a problem of linear program-
partition of set R, if the following two conditions are

met: ming. Assume 4 = (az.'i) is the matrix with nxm di-

© 2015 Bull. Georg. Natl. Acad. Sci.

Solution of Minimal Set Partition and Set Covering Problems 39

Table 1. The results of experiments for set partition problem

Problem I(;Ifur r(r)l‘l))vesr’ Number of Computational Optimal Note
N columns, M | time (seconds) | value, f*
sppnw06 50 6774 54.714 7810
sppnw07 36 5172 0.24 5476
sppnw08 24 434 0.063 35894
sppnw09 40 3103 2981.71 67760
sppnw10 24 853 0.195 68271
sppnw12 27 626 0.188 14118
sppnw16 139 148633 123.028 1181590
sppnw20 22 685 0.06 16812
sppnw21 25 577 0.044 7408
sppnw24 19 1366 0.083 6314
sppnw25 20 1217 0.228 5960
sppnw3 1 26 2662 0.147 8038
sppnw37 19 770 0.51 10068
sppnw40 19 404 0.089 10809
sppnw42 23 1079 0.037 7656
sppkl01 55 7479 37.687 1113 Appigl’;‘emate
sppnw03 59 43749 4347.16 25302 Appigl’;‘emate
sppnw04 36 87482 568,216 17324 Appigl’;‘emate

mensions, where @; =1 if i € §; and a; =0 in other
cases. Weight ¢; >0 corresponds to each S ;. Mini-

mal covering implies the selection of columns of ma-
trix 4 that will cover each row and their total weight
will be minimal. We must minimize target function to

formulate the problem

f(x)=20j-xj

1

, 0)

with the following constraints:

m
Zaij-xj, i=1..,n, X; € {0,1},j =1,...m, @4
=1

Here, variable X, is equal to 1 if set S/ enters into
covering. In other cases, X, is equal to zero.

In the problem of minimal set covering, in differ-
ence from the problem of partition, non-intersection
of covering sets is not necessary, i.e. it is not neces-
sary to meet the above-mentioned condition (2). Other
details are the same.

Because, the problems of minimal set partition

and set covering belong to the class of complex NP

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 1, 2015

problems [1]. The efficient algorithm for precise solu-
tion of such problems does not exist nowadays (ex-
cept in private cases). Time of solution depends on
the scale of problem and it may significantly increase.
In practice, solution of these problems has applica-
tions in locating service facilities, transport schedul-
ing [2], locating sources of power system [3] and
data transfer [4]. Techniques of branches and edges
are used for getting precise solution of these prob-
lems [2-6]. In recent days genetic algorithms [7-8],
neuron nets [9] and other heuristic algorithms are
often used to get approximate solutions of large-scale
problems.

The current work offers precise solutions of prob-
lems of minimal set partition and set covering. Solu-
tion algorithm is based on the technique of branches
and edges.

2. Solution of Problem of Minimal Set
Partition

The article considers solution of the problem of mini-
mal set partition [11] and then expands it to the prob-

lem of set covering. It is worthwhile to note that ap-

40

Natela Ananiashvili

Table 2. The results of experiments for set covering problem

Number of Number of . .
Computational Time Value of
Problem Rows, Columns, Note
N M (seconds) Coverage, f°
scpel 50 500 (3972) 85319 8
scpe2 50 500 (4055) 23.483 10
scpe3 50 500 (4066) 199.404 9
scped 50 500 (3991) 2.067 11
scpes 50 500 (4063) 305.338 9
scpdl 200 1000 (3120) 0.222 573 Appizl"l;emate
scps3 200 2000 (6006) 0.062 353 Appizl"l;emate
scp63 200 1000 (8762) 0.634 183 Appizl"l;emate
scp410 200 1000 (3006) 0.217 752 Approximate
value

probation of the program had good results for ran-
domly developed matrices (by author) and for test
problems taken from OR-Library[10]. The article
shows the results of test problems of OR-Library
solved by newly developed algorithm.

The logical design of problem solution program
that is used for solving the problem of minimal set
partition can be described in the following way: as-
sume partition matrix is 4, number of rows — N and
number of columns — M. At the first stage the parti-
tion matrix 4 is divided into blocks, as we have in [2:
55-56]. Each block includes a column that corre-
sponds to set j, if this set “covers” j, node and may
be some nodes from setj+1, j+2,...,N, but not from 1
to (j-1). Let us compactly write and “pack” each col-
umn (we’ll describe the procedure of “packing” in
details below). After this let us regroup the columns
of each block according to the increment of weights
(prices). It significantly decreases the number of se-
lections and correspondingly, time necessary for re-
alization. Then, let us use tree algorithm of simplified
search presented in [2: 55-57]. Basic operations on
columns of matrix are made by means of logical op-
erators. It also gives economy in time of realization.

The offered procedure of packing allows to de-
crease computational time approximately 32°M-times
with non-essential elaboration of programming tech-

niques, because instead of N operation the program

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 1, 2015

includes [N/32]+1 operations (here [N/32] denotes
integer part of division of N by 32).

The concept of “packing” is the following: let us
assume A (N *xM) is the partition matrix, N —number
of rows and M — number of columns. After dividing
this matrix into blocks, it is reasonable to write it into
Unsigned Long type dynamic matrix AP in “packed”
form. Dimensions of matrix AP is ([N/32]+1) XM, i.e.
each column of matrix 4 will be packed in consecu-
tive cells [N/32]+1 and written in the main memory.
Because in tree algorithm of search each column is
considered at least once and computational time for
each column is decreased approximately 32-times, we
can say that in the worst case computational time is
decreased by 32°M-times.

The following algorithm is used to pack column

A; of matrix 4:

Step 1: present Nin the form N =32-/+ k, where
[>0 isinteger, while & is integer and 0 < k <32;

Step 2: assume Pck[ii] =0,ii=0,..,N (vector
Pck should be Unsigned Long type); i =1; &, =32;

Step 3: assume p =1;

Step 4:if 4, ((i—1)-32+ p—1)=1, then assume
=0’ (‘0’ is Unsigned Long type constant). Other-
wise, assume ¢=1";

Step 5: assume c=c<<(32-p) (where

Solution of Minimal Set Partition and Set Covering Problems 41

c=c<<(32-p) is theleft shift in ¢ with (32— p)
binary digit; Pck[i—1]= Pck[i—1]|c, where |isa
logical sum.

Step 6: assume p = p+1.1f p <k, then jumpto
the step 4;

Step 7: assume i =i+1;

Step 8:if i <, then jump tothe step 4. If i =/,

then assume k; =k and jump to the step 3, other-

wise (i =/+1) finish the algorithm.

The program also realizes reverse function of pack-
ing that unpacks (expands) a vector. This algorithm
expands (unpacks) the Unsigned Long type array
with [N/32]+1 dimensions into integer type array B
with N components. Let us describe the algorithm of
unpacking:

Step 1: present Nin the form N =32-/+ k , where
| > 0 isinteger, while & is integer and 0 < k <32

Step2:assume B; =0,/ =1,...,N;i=1 ky, =32;

Step 3:assume j =1, ¢, ="1"(‘1’is theunsigned
long type constant);

Step 4: assume c¢=c¢, <<(32—,-1) (where
¢y <<(32-j-1) is theleft shiftin ¢, (32—,-1)
with binary digit; assume ¢, = Pck[i - 1] & c , where
& is alogical multiplication;

Step 5:if ¢; #' 0", assume B((i-1)-32+j)=1;

Step 6: assume j = j+1.If j <k, then jump to
the step 4;

Step 7:assume i =i+1.1f i =/,assume k =k
and jump to the step 3, otherwise (i =/+1) finish

the algorithm.

The program is checked on several randomly
formed problems and on test files from OR-Library.
The results of solutions of problems of OR-Library

are shown below in the form of Table, where

* . M
f :mlnzj:]cj-xj. o)
We note that value is approximate for several prob-

lems. For instance, computing was stopped for the

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 1, 2015

problem sppk101, when the value of function became
1113, because after over 1 hour of computation the
result did not get any better. In every other case the
problems are precisely solved.

If we compare these results with the results of
solution of problems from [12] ([12] uses hybrid tech-
nique), the results of our article are better. For in-
stance, in sppnw06 problem optimal value is 7810
and computational time is 54.714. In [12] the optimal
value is 9788 and 8038; computational time is 78.7
and 30.3 seconds. Certain problems, for instance
sppnwO08, are not solved in [12]. In [13] the algorithm
of linear programming is used that consumes the tech-
nique of minimal square. For sppnw06 problem opti-
mal value is 7640 in [13]. CPU time for this problem is
0.14 and quantity of iterations is 924. Other solutions

generally coincide with the above-mentioned results.

3. Solution of the Problem of Minimal
Set Covering

The same idea[11] is used for solving the problem of
minimal set covering, i.e. columns of cover matrix are
written in packed form, as it was done for the problem
of partition, then the program is modified and the
problem of covering is solved. The important aspects
of modification are the following: the columns of
cover matrix were divided into blocks, exactly as it
was done for the problem of partition, but as there
was no requirement for non-intersection of cover

columns, each column that corresponded to the set
§; = {FJ-I 1 ,~~-,7”jk} was brought in every block:

Fj, s Tj, 575, . Obviously, dimensions of cover matrix

significantly increased. For example, in one case (prob-
lem scpel) matrix with dimensions 50x500 took the
dimensions 50x3972 and in other case (problem scpe2)
dimensions increased to 50x4055. When the current
problem is solved, it is not necessary to check non-
intersection of every new column with current col-
umns, if an initial scale of problem is not very large
(50%500) or it did not increase dramatically. In the
Table the column “Number of Columns” shows the

number of matrix columns taken from the problem of

42

Natela Ananiashvili

OR-Library. Number of columns indicated in paren-
thesis is based on our algorithm. Modified program
used the matrix of the dimensions during computa-
tions.

The Table shows that cover algorithm is efficient
for solution of relatively small-scale (approximately
50x500) problems and quickly gives precise solution.
Besides, it quickly gives the approximate values for

the solution of large-scale problems and this solution

does not get better after over 1 hour of computation.

The algorithm was tested on computer with stand-
ard specifications: Intel(R) Pentium (R) Dual CPU
E2220,2.40 GHz,2.00 GB of RAM.

The results show that the algorithm offered in the
article is quite efficient for getting precise solutions of
small-scale problems and approximate solutions of large-
scale problems. Approximate solutions can be used as

theinitial approximations for the other algorithms.

oggmﬁa.)én 39

‘888063150 QOS(’)(BOISO Qb ng})ﬁ:;ols .)30‘)00532)015
3dmbLb6Y

5. .)5050.)'33091\70

3 xo&)boggogols mﬁog)olsols Zsobggiaﬁogm ;750&7(5[50@‘7@0, %gls(ﬁ @9 Zso&g[fgﬁolsﬂg@gggg:m HgGgogﬁgﬁomo
PJIRBado, Pdogrobo

(Fo68mggbomoas 335093030 3. bagmydsdol og)

bgogesdo gsbbomamos mdgetybo ogmgol s 3ggsM30l 33m(336580T 33mbLbs. Bemamys
GEmBoQoo, -330063150 a\).)ﬂm(aols > Q.)(B.)ﬁaoh .)3(*)(3.)5330 Boadﬁmasa&) NP 6073Qo .)3070.)533015
onlﬂs. Qggaolsomziols dsomo 'B-als(!bo oamblsso'lsam;io'ls aoﬁm\)o dolo &lﬁdm '333mb333360'ls.>, 56 ot‘)'lsabmb'ls
3‘33{]&'2]60 .)Qamﬁomao, 3dmblbol Qﬁm Qoam doa\)abﬂ;mo.) .)3(*)0.)501& ‘bmaab‘ba oY) ol '33'[5.)8;200.)
dgmogt as0bstiml 3dm (3960 Bmdol Bérslonb gHomsm. 33dmggbgdamos dgdbol bols addstmBoggdnemo
.)Qamtﬁomﬂo. 360)66.)30633015 @3:]50 dols oﬁooﬁha&omo aaﬁomga&o'ls baﬁ)x%a 33B08Q363Qo aabgga
3‘)3"’1‘]3533'3Q0 3351503633015 32'M—xa€) '83300633.), .)ls333 a.)ammagmols.)maols 1;.)30607 Qﬁmo'ls
dosbmmgdon 32°M-x96 3gdotgds, Losg M msdgetsgo Jggbodtsgemaggdol Gompgbmdss. o3
dobboom :x_at’) Qoam(Bols 30&6003 B.)o%'ﬂﬁ.) 6033‘)2]&'36‘)Q > '833;.\:33 Bogabago 3.)&600015 1533&36%3
dot’mo).)a\m "’336‘)(30330 'Bahﬁ-aggg.) Qmaodﬁﬂm m3360®m6330m. Sd .)amG.)E;]Bols aamls.)'blsﬁagm.)n\)
a\).)o%’aﬁo 360’;36&)3360'[3 &"83Q35h° ogamﬁoma'ag 35.) C-H'—'Ba, t‘)abgo%abagoa Dev-C++ 3:.&;38(»'30.
dm33Q3:]'lso .)36030633»2]Q0.) Qoéaﬁoéﬁﬁo'ao dot‘)ao;t\) GEmBOQ t‘)aoQ-aﬁ dmﬂ&osoémﬁ-ago ®o3ols
.)3(*)(3.)533%3 — GEmBoQo OR-Library—Q.)E .)Qabt]Q ls.)&als@m .)3(*)(3.)533%3. Bogabago.) BodﬂomQ
Qoaodﬂoamgo;maﬁagmo Hag%a&) Qﬁmoh 3(*)5036-3Q oﬁéaﬁz})ga&lo. aaﬂmo%o%abago ﬂamma\m
aahoagmo a.)amﬂaﬁabag oanB 36.)(30).) mamt’mols od 36.);]&06-3;20 aameaﬁaboh aamlsa'blssamag,
6(*)3;23800 -a'a-aogmmp\) 300833533035 -33(3963150 n\).)amcanls 36 ;x\).)(a.)ﬁ;}nls .)307(3.)5.)‘53, 36 ﬁmamaboe
Fo9momagbgb dob J3999m(3965L (dsgsmoosm g3Msgdo (3gPmms Emdobotgdsmo Lodesgemols
dcb5dg3650).

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 1, 2015

Solution of Minimal Set Partition and Set Covering Problems 43

REFERENCES

1. Garey M. R., Johnson D. S. (1979) A guide to the theory of NP-completeness. San Francisco: W. H. Freeman

and Co.

Christofides N. (1986) Computer science and applied mathematics, London. p. 55-57.

. Minieka E. (1978) Optimization Algorithms For Networks And Graphs, New York.

. Berge C. (1962) Theory of graphs and its applications, London.

. Balas E., Ho A. (1980) Mathematical Programming 37-60.

. Fisher M. L., Kedia P. (1990) Management Science 36: 674-688.

. Beasley J. E., Jonsten K. (1992) European J. Oper. Res. 58, 2: 293-300.

. Eremeev A. V. (2000) Artificial Evolution. Proc. Berlin: Springer, 84-95.

9. Grossman T., Wool A. (1997) European J. Oper. Res. 101, 1: 81-92.

10.Beasley J. E. (1990) Journal of the Operational Research Society. 41, 11: 1069-1072.

11.4naniashvili N. (2014) V Annual international conference of the Georgian mathematical union, Batumi, p. 60.

12.Crawford B., Soto R., Monfroy E., Castro C., Palma W. and Paredes F. (2013) Mathematical Problems in
Engineering, v. 2013: 12 p.

13.Seunghyun K. (2007) Linear Programming Algorithms Using Least-squares Method, Georgia Institute of
Technology. USA.

Received December, 2014

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 1, 2015

