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ABSTRACT. In the present research we investigate variation of scaling features of earthquakes’
temporal and spatial distribution in Caucasus from 1960 to 2014. Data sets of waiting times and inter-
earthquakes distances were obtained from the original and declustered Caucasus catalogues. For the
assessment of long-range time-correlations of used data sets the method of Detrended Fluctuation Analysis
(DFA) was used. We analyzed dynamical features of seismicity in Caucasus by assessing scaling
characteristics of earthquakes’ time and space distribution for shorter time periods and calculated DFA
slopes for different sliding windows. Exactly, calculations were carried out for sliding windows of 500
data length. DFA scaling exponents variations of waiting time sequences obtained from the original and
declustered catalogues were assessed by different order of polynomial fitting. In addition to fixed length
data sets, the scaling exponents were separately calculated for 5 years long sliding windows. The data of
surrogate waiting times obtained by shuffling of original series were processed also by DFA method. It
was found that scaling exponents calculated for different windows vary in a wide range indicating variable
temporal behavior from anti-persistent to persistent type. Different DFA scaling regimes are observed.
Close to 0.5 and antipersistent scaling exponents were obtained for the time periods when the strongest
regional earthquakes occurred. In the present work, we studied dependence of scaling properties of
waiting times series and distances between consecutive earthquakes in the catalogue of Caucasus in
different released energy range. We tested our results for scaling exponents calculated for different
length of sliding windows. © 2015 Bull. Georg. Natl. Acad. Sci.
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For the last decade the interest to the investiga- and temporal distributions [1-8]. According to the
tion of scaling properties of seismic process increased ~ results of those researches, seismic process, in gen-
and many different researches were carried out to  eral, cannot be regarded as a random process in all its

study the dynamical features of earthquakes’ spatial ~ domains [7-11]. Moreover, it was even shown that
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Fig. 1. Map of territory covered by the used Caucasian
catalogue, 1960-2014.

earthquakes’ distribution in the temporal and spatial
domains reveals features of close to low-dimensional,
nonlinear structure [9].

Importance of such researches for Caucasus is
obvious taking into consideration that Caucasus is
seismically active zone and that in the last decades it
was struck by strong earthquakes, such as Spitak
07.12.1988 (M6.9), Racha 21.04.1991 (M6.9), Racha
07.09.2009 (M6.1).

Materials and Methods

We base our analysis on the data sets of waiting
times, inter-earthquake distances and magnitudes
obtained from the Caucasus earthquake catalogue
(1960-2014) of M. Nodia Institute of Geophysics,
Thilisi State University and Institute of Earth Sci-
ences, [lia State University (Fig. 1).

Number of earthquakes in considered original
Caucasus catalogue was 6684 (M >3.0). At the same
time, the number of events in declustered, according
to Reasenberg’s algorithm (1985), catalogue was 4757
at M >3.0 magnitude threshold.

For investigating the features of earthquakes’ time
distribution from these catalogues we calculated the
time intervals (in minutes) elapsed between succes-
sive events at #(i+1) and #(7), named interevent time
intervals, At =t(i +1) —¢(i) . Similarly, the inter-earth-

quake distances in km were calculated.
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Fig. 2. DFA fluctuation curves of a) ITI sequences obtained
from declustered, 1960-2014, Caucasian catalogue at
M3.0 threshold (black squares — original data, white
squares - phase randomized data). The order of the
polynomial fitting is p=2. n indicates the time scale
(given here as the sequential number of data in the
analyzed series). Linear fittings are shown by thin
straight lines.

Long-range time-correlations in the investigated
interevent time, distances and magnitudes data sets
were assessed by the method of Detrended Fluctua-
tion Analysis (DFA) [12, 13]. This method of analy-
sis provides a quantitative parameter (DFA scaling
exponent) and gives information about correlation
properties of the analyzed data sets. In order to test
the presence of dynamical structure in the used data
sets we compared the results obtained on the origi-
nal data sets with the results of data series obtained
after shuffling the procedure.

According to DFA method, given time series of N
samples was integrated, then the integrated time se-
ries Y(7) was divided into boxes of length #, and in
each box the polynomial local trend Y (i) of the order
p (p=1,2,3...) was calculated and removed. Then N/n
mean squared residuals - Detrended Fluctuation Func-
tions (F(n)), should be calculated for each box of size n:

Fm = -3 i) -1,0)]
N <

Since F(n) increases with the box size #, in case
of fractal or self-similar properties of analyzed data, a
power-law behavior F'(n) ~ n“ canbe revealed. It
is important to note, that above mentioned process
is repeated for different scales (box sizes) to obtain a
power law behavior between F(n) and n. If a power
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Fig.3. DFA scaling exponents variation of waiting times
obtained from original (black), and declustered (grey)
catalogues. Order of the polynomial fitting p=3.

law scaling exists, then F(#n) vs. n relationship in a
double logarithmic fluctuation plot will be linear or
close to the linear and the scaling exponent ¢ can be
estimated. If scaling exponent o= 0.5, we deal with
the uncorrelated dynamics of random walk type [12, 13].
In this case the time series is identical to a white
noise. It is known, that scaling exponent & gives in-
formation about the long-range power law correla-
tion properties of the analyzed data sets. If « is dif-
ferent from 0.5, then the time series is regarded as a
long-range correlated or anti-correlated. When o> 0.5
the correlations in the signal are persistent or are
antipersistent if &> 0.5 [14, 15]. As it was mentioned
the scaling exponent « is considered as an indicator
of the nature of the fluctuations giving the informa-
tion about the long-range power law correlation prop-
erties in the analyzed data sets. In case if the func-
tion F(n) displays different power-law behaviors in
double logarithmic plots of the DFA fluctuation func-
tion, one or more crossovers between different scal-
ing regimes may be observed.

As an example of calculation in Fig. 2, we show
results for original waiting times and its shuffled sur-
rogates. We see clear differences in calculated scal-
ing exponents values which was 0.6 for original se-
quence and 0.49 for the same sequence after shuf-
fling. DFA can be accomplished for different order of
the polynomial fitting in order to eliminate trends of

certain origin. As we mentioned in previous section,
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Fig. 4. DFA slopes of interevent times vs DFA scaling
exponents of interevent distances sequences. Calcula-
tions for whole declustered catalogue for consecutive
500 data windows by 1 data step. Order of the
polynomial fitting p=2.

these calculations were accomplished for sliding win-
dows of different length.

Results and Discussions

We started from the analysis of waiting times, inter-
earthquake distances and magnitudes sequences
obtained from the original and declustered Caucasus
catalogues. This was an important part of research in
order to understand how declustering procedure may
affect long-range correlation features of earthquakes
spatial, temporal and energy features. Further results
of analysis for waiting times sequence is presented
in Fig. 3. Here, for demonstration purposes the re-
sults for p=3 polynomial fitting is presented; for p=2
and p=4 the situation is practically the same.

As we see, earthquakes’ temporal distribution
remains mostly in a long-range correlation despite
the fact that about 2000 events (aftershocks) were
removed from the original catalogue by declustering
procedure. In case of the other considered data sets
situation was similar, i.e. aftershocks depletion by
declustering procedure did not change the general
dynamical features of analyzed process. Thus, in fol-
lowing we focused on the data sets from declustered
Caucasus catalogue.

Next, in order to have understanding about rela-
tions between earthquakes time and space distribu-

tion we compared calculated scaling exponent val-
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Fig. 5. DFA scaling exponents’ variation for waiting times
(black), distances (hollow), grey (magnitudes) data sets
calculated for consecutive 500 data windows shifted by
1 data step. The order of the polynomial fitting p=2.

ues. In Fig. 4 we present these DFA scaling expo-
nents calculated for waiting times data sets versus
scaling exponent values of inter-earthquakes dis-
tances sequences. We see that in most cases the
earthquake space and time distribution reveals fea-
tures of persistent long-term correlated process.

This is in good accordance with our earlier find-
ings [10]. Analysis carried out on the data sets from
declustered catalogues was important because very
often more regular, close to low-dimensional part
of seismic process is considered as a result of
spatio-temporal correlations (clustering) of strong
earthquakes with their aftershocks and foreshocks.
We see here that after declustering there remains an
essential part of events correlated in space and time.

General view of scaling exponents calculated for
waiting times, inter-earthquake distances and
magnitudes sequences accomplished for consecu-
tive 500 data windows is presented in Fig. 5.

It is interesting that scaling exponents values vary
in a wide range from window to window, which means
that the long-range correlation features of seismic
process undergo essential changes in different peri-
ods of observation.

Most important is that the extent of long-range

correlation (scaling exponent values) reveal distinct
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Fig. 6. DFA of inter-earthquake distances exponents vs.
DFA exponent of waiting times (WT) calculated for
consecutive 500 events windows. The seismic energy
release (in Joule) is shown by shading — from grey to
black (see the scale on the right insert).

relation to the amount of seismic energy release. In-
deed, as we see in Fig. 6, in the periods of maximal
seismic energy release, earthquake time distribution
may reveal different behaviors ranging from anti-per-
sistent and random-like to slightly persistent.

At the same time in a sense of spatial distribution
we observe that the same time periods of maximal
energy release are characterized by clearly persistent
behavior.

In the time periods when the seismic energy re-
lease decreases by one or two units the earthquakes’
time distribution becomes much more long-range cor-
related, contrary to the spatial distribution which looks
less correlated than in periods with maximal seismic

energy release.

Conclusion

According to our results, the scaling exponents of wait-
ing time and inter-earthquakes distances in the Cauca-
sian seismic catalog calculated for consecutive sliding
windows, show substantial variation through time of
observation. Seismic process in the time and space do-
mains generally reveals long-range correlations though
in the time periods of strong earthquake occurrence

anti-persistent and random-like behavior may take place.
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