Mathematics

Approximation by Trigonometric Polynomials of Fractional Derivatives of Periodic Functions and the Properties of Conjugate Functions in $L^{p(x)}$ Spaces when $\min p(x)=1$

Nina Danelia* and Vakhtang Kokilashvili**
* Department of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University
**Academy Member, A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University

Abstract

The present paper studies the problem of approximation of 2π-periodic functions and the properties of conjugate functions in the spaces $L^{p(x)}$, when $\min p(x)=1$. The Bernstein-Zygmund type inequality for fractional derivatives of trigonometric polynomials is established and relying on this inequality, the direct and inverse inequalities for fractional derivatives are obtained. The condition ensuring belonging of conjugate functions to the space $L^{p(x)}, \min p(x)=1$ is explored. The Zygmund type inequality for generalized moduli of smoothness of conjugate functions is presented and a subclass, invariant with respect to the conjugate operator, is determined. © 2015 Bull. Georg. Natl. Acad. Sci.

Key words: variable exponent Lebesgue spaces, generalized moduli of smoothness, fractional derivatives, conjugate functions.

In the present paper we focus our attention on the problems of approximation of 2π-periodic functions in variable exponent Lebesgue spaces $L^{p(x)}$ under the condition that $\min _{[-\pi, \pi]} p(x)=1$. Moreover, in the above-mentioned spaces we present the Zygmund type inequality for generalized moduli of smoothness of conjugate functions and on the basis of that inequality we find a subclass of the space $L^{p(x)}, \min _{[-\pi, \pi]} p(x)=1$, which is invariant with respect to the conjugate operator.

The paper is organized as follows. Section 1 involves definitions and results which will be needed in the sequel. The Bernstein type inequality for fractional derivatives of trigonometric polynomials is given in Section 2. Next, the direct and inverse (in S. Bernstein's terms) inequalities of constructive theory of functions for fractional derivatives of 2π-periodic functions are established. In Section 3 we explore a condition which leads to the belonging of the conjugate to the function $f \in L^{p(x)}, \min _{[-\pi, \pi]} p(x)=1$ to the same space; the Zygmund type inequality for generalized moduli of smoothness of conjugate functions is proved and a subclass, invariant with respect to the operation of conjugation, is found.

1. Preliminaries.

Let $p(x)$ be a 2π-periodic function, continuous on the whole axis. Assume $T=[-\pi, \pi]$. By P_{1} we denote a set of those $p(x)$ for which

$$
\begin{equation*}
1 \leq \underline{p} \leq p(x) \leq \bar{p}<+\infty \tag{1.1}
\end{equation*}
$$

where $\underline{p}=\min _{T} p(x), \bar{p}=\max _{T} p(x)$.
The set of exponents $p(x)$ for which $1<\underline{p} \leq p(x) \leq \bar{p}<+\infty$ we denote by P. By $P^{\log }$ we denote a set of those $p(x)$ for which the log-continuity condition

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{A}{-\ln |x-y|},|x-y|<\frac{1}{2} \tag{1.2}
\end{equation*}
$$

is fulfilled. Here the constant A does not depend on x and y from the set T.
The variable exponent Lebesgue $L^{p(x)}(T)$ spaces for the exponent $p \in P_{1}$ is the set of all measurable functions $f(x)$ for which

$$
\|f\|_{p(\cdot)}:=\inf \left\{\lambda>0, \int_{T}\left|\frac{f(x)}{\lambda}\right|^{p(x)} d x \leq 1\right\}
$$

It is known that $L^{p(x)}$ spaces are the Banach function spaces (see, for example, [1]).
Throughout the paper, we will employ the following structural and constructive characteristics of $2 \pi-$ periodic functions from $L^{p(x)}(T)$:

$$
\begin{equation*}
\Omega(f, \delta)_{p(\cdot)}=\sup _{0<h \leq \delta}\left\|\frac{1}{2 h} \int_{x-h}^{x+h} f(t) d t-f(x)\right\|_{p(\cdot)} \tag{1.3}
\end{equation*}
$$

is a generalized moduli of smoothness, and the best approximation by trigonometric polynomials

$$
\begin{equation*}
E_{n}(f)_{p(\cdot)}=\inf \left\|f-\mathrm{T}_{k}\right\|_{p(\cdot)} \tag{1.4}
\end{equation*}
$$

where the infinitum is taken under all trigonometric polynomials of degree not greater than n.
In [2-3], under the condition $p \in P^{\log } \bigcap P$, the authors prove the refined direct and inverse theorems of constructive theory of functions, including weighted variable exponent Lebesgue spaces and periodic differentiable in a generalized sense functions. Here we mean differentiability in a sense introduced in [4].

In the case where $p \in P^{\log } \bigcap P_{1}$, i. e. $\min _{[-\pi, \pi]} p(x)=1$, the direct theorem (an analogue of the second direct Jackson's theorem) for derivative of integral order, has been indicated in [5-6]. However, in the latter paper there is presented the theorem of inverse type for the class of Lipschitz type. In this work we, firstly, extend the result obtained in [5] to fractional derivatives and, secondly, we have obtained a general inverse theorem for fractional derivatives.

Another problem in the paper under consideration concerns both the condition ensuring belonging to the space $L^{p(x)}, \min _{[-\pi, \pi]} p(x)=1$, of a conjugate to the function $f \in L^{1}$ and the classes, invariant with respect to the conjugate operator.

In [7], S.B. Stechkin in terms of the best approximations in the space C has found the condition for the conjugate function to be continuous. In the same work it is mentioned that analogous results are likewise valid for the classical Lebesgue space L^{1}. In the present work we solved the same problem in a general statement, in the framework of spaces $L^{p(x)}, p \in P^{\log } \bigcap P_{1}$.

2. Direct and Inverse Theorems for α-Order Derivatives of Periodic Functions

In this section we will employ the derivative of fractional α-order $\alpha>0$ in Weyl's sense whose definition is given, e. g., in A. Zygmund's book (Vol. II, Ch. XII, Sect. 8). For the 2π-periodic function $f \in L^{1}(T)$, the above-mentioned derivative we denote by $f^{(\alpha)}$.

The basis of our investigation in this section is the following Bernstein-Zygmund type theorem for fractional order derivatives of trigonometric polynomials.

Theorem 1.1. Let $p \in P^{\log } \bigcap P_{1}$ and $\alpha>0$. Then for trigonometric polynomials T_{n} the inequality

$$
\begin{equation*}
\left\|\mathrm{T}_{n}^{(\alpha)}\right\|_{p(\cdot)} \leq c n^{\alpha}\left\|\mathrm{T}_{n}\right\|_{p(\cdot)} \tag{2.1}
\end{equation*}
$$

holds, where the constant c does not depend on T_{n} and n.

Note that the inequality of type (2.1) for $p \in P^{\log } \bigcap P$ and for general type derivatives in weighted setting has been proved in [2]. Certain improvements of the corresponding inequaliy is given in [8]. In [5] and [6], the inequality of type (2.1) is stated only for positive integer α, but under the condition $\underline{p}=1$.

By $W^{p(\cdot), \alpha}$ we denote a set of those 2π-periodic functions for which

$$
\|f\|_{W^{p(\cdot), \alpha}}=\|f\|_{p(\cdot)}+\left\|f^{(\alpha)}\right\|_{p(\cdot)}<+\infty
$$

The following statements are valid:

Theorem 2.2. Let $p \in P^{\log } \bigcap P_{1}$ and if $f \in W^{p(\cdot), \alpha}, \alpha \geq 0$, then the inequality

$$
\begin{equation*}
E_{n}(f)_{p(\cdot)} \leq \frac{c}{n^{\alpha}} \Omega\left(f^{(\alpha)}, \frac{1}{n}\right)_{p(\cdot)^{\prime}} \tag{2.2}
\end{equation*}
$$

holds, where the constant c does not depend on T_{n} and n.
Theorem 2.3. Let $p \in P^{\log } \bigcap P_{1}$, and for some $\alpha>0$ the condition

$$
\sum_{n=1}^{\infty} n^{\alpha-1} E_{n}(f)_{p(\cdot)}<+\infty
$$

is fulfilled. Then $f \in W^{p(\cdot), \alpha}$, and the inequality

$$
\begin{equation*}
\Omega\left(f^{(\alpha)}, \frac{1}{n}\right)_{p(\cdot)} \leq c\left(\frac{1}{n^{2}} \sum_{k=0}^{n}(k+1)^{\alpha+1} E_{k}(f)_{p(\cdot)}+\sum_{k=n+1}^{\infty} k^{\alpha-1} E_{k}(f)_{p(\cdot)}\right) \tag{2.3}
\end{equation*}
$$

is valid.
Analogous statements are valid for generalized moduli of higher order smoothness.

3. The Condition of Belonging of a Conjugate Function to the Class $L^{p(\cdot)}, p \in P^{\log } \cap P_{1}$, Zygmund Type Inequality and Invariant Classes.

At the beginning of this section, in terms of the best approximations we indicate the condition for the function $f \in L^{p(\cdot)}, p \in P^{\log } \bigcap P_{1}$ which guarantees that the derivative of the conjugate function \tilde{f} belongs to the same space.

Theorem 3.1. Let $p \in P^{\log } \cap P_{1}$ and $Z_{0}=\{0,1,2, \ldots\}$. If the condition

$$
\sum_{n=1}^{\infty} n^{r-1} E_{n}(f)_{p(\cdot)}<+\infty, \quad r \in Z_{0}
$$

is fulfilled, then the r-th order derivative of the conjugate function $\tilde{f}^{(r)} \in L^{p(\cdot)}$ and the inequality

$$
\begin{equation*}
E_{n}\left(\tilde{f}^{(r)}\right) \leq c\left((n+1)^{r} E_{n}(f)_{p(\cdot)}+\sum_{k=n+1}^{\infty} k^{r-1} E_{k}(f)_{p(\cdot)}\right) \tag{2.4}
\end{equation*}
$$

holds, where the constant c does not depend on f and n.

From the above theorem, in particular for $r=0$, using the inverse theorem, we can conclude that the following assertion is valid.

Theorem 3.2. Let $p \in P^{\log } \cap P_{1}$. If the condition

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\Omega(f, t)_{p(\cdot)}}{t} d t<\infty \tag{2.5}
\end{equation*}
$$

is fulfilled, then $\tilde{f} \in L^{p(\cdot)}$, and Zygmund type inequality

$$
\begin{equation*}
\Omega(\tilde{f}, \delta)_{p(\cdot)} \leq c\left(\int_{0}^{\delta} \frac{\Omega(f, t)_{p(\cdot)}}{t} d t+\delta^{2} \int_{\delta}^{\pi} \frac{\Omega(f, t)_{p(\cdot)}}{t^{3}} d t\right) \tag{2.6}
\end{equation*}
$$

holds.

From this theorem we have the following
Corollary 3.1. Iffor some $k \in N$,

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\Omega(f, t)_{p(\cdot)}}{t}\left(\ln \frac{2 \pi}{t}\right)^{k} d t<\infty, \tag{2.7}
\end{equation*}
$$

then

$$
\int_{0}^{\pi} \frac{\Omega(\tilde{f}, t)_{p(\cdot)}}{t}\left(\ln \frac{2 \pi}{t}\right)^{k-1} d t<\infty
$$

By V_{k} we denote the set of those $f \in L^{p(\cdot)}, p \in P^{\log } \cap P_{1}$ for which condition (2.7) is fulfilled. Then Corollary 3.1 implies that if $f \in V_{k}$, then $\tilde{f} \in V_{k-1}$.

Assume

$$
V=\bigcap_{k=0}^{\infty} V_{k} .
$$

Then the validity of the following assertion is obvious.

Theorem 3.3. Let $p \in P^{\log } \cap P_{1}$. Then the class V is invariant with respect to the conjugate operator. Acknowledgement. This work was supported by the Shota Rustaveli National Science Foundation Grants (Contracts No D-13/23 and 31/47).

วدoyдدอீำ

REFERENCES

1. Cruz=Uribe D. and Fiorenza A. (2013) Variable Lebesgue spaces. Birkh" $\{$ a\}user, Springer, Basel.
2. Akg $\mid>\{u\} n$ R. and Kokilashvili V. (2011) Georgian Math. J. 13, 3: 399-423.
3. $A k g \mid "\{u\} n$. and Kokilashvili V. (2012) Georgian Math. J. 19, 4: 611-626.
4. Stepanets A.I. (2005) Methods of Approximation Theory, VSP, Leiden.
5. Sharapudinov I.I. (2013) Izv. RAN, Ser. Mat. 77, 2: 197-224.
6. Sharapudinov I.I. (2012) Izv. Sarat. Univ. 13, 1: 45-49.
7. $A k g \mid "\{u\} n$ R. and Kokilashvili V. (2013) Proc. A. Razmadze Math. Institute, 161, 15-23.
8. Stechkin S.B. (1954) Izv. Acad. Nauk SSSR, Ser. Mat. 29: 197-206.
