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ABSTRACT. The paper deals with the Riemann-Hilbert boundary value problem for the Carleman-
Vekua equation with polar singularities. Index formula and criteria of solvability are obtained.
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In the present work for the Carleman-Vekua equation

%Wm(z)ww(z)rwo V)

Z

with the polar singularities the Riemann-Hilbert boundary value problem

Re{2(epw (1)} =7(1). T RH)
inthe domain G is investigated. G is a finite m + 1 -connected domain of the complex plane z = x +iy with
sufficiently smooth boundary provided that the given functions 4 (t) and ;/(t) are the Holder continuous
functions.

Itis well-known that the equation (C-V) in case of regular coefficients (i.e. 4(z),B(z)< L, (G) for some
P >2)the condition A (t) # 0,¢ € I' provides the Noetherity of the problem (R-H) in the class of continuous
in (_}\{zo} functions satisfying the equation (C-V) in G\{ZO} and the asymptotic conditions
0(|z -z |Cr ),z — z,. Here z; is some point in the domain G and ¢ is some real number.

For the Carleman-Vekua equation with the polar singularities the situation is essentially different. It is
known that there exists sufficiently wide class of equations permitting only trivial solutions in the domain
G\ {ZO} and satisfying the asymptotic conditions O (|z - zo|cr ,Z —> z,, where z;,is the point of polar
singularity of the equation (C-V), ¢ is areal number. Therefore it makes no sense to consider the boundary
value problems in this class. On the other hand if there are no restrictions on the solutions in the neighborhood
of the singular point z, then it may occur that the homogeneous boundary problem has infinite number of
linearly independent solutions.
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The Riemann-Hilbert Boundary Value Problem ... 13

In this work for the Riemann-Hilbert problem the Noetherity conditions in particular like asymptotic
conditions O|exp{d, | z— Zo|i% } ,z —> z,, for sufficiently wide class of the Carleman-Vekua equations are
obtained. Here the constant parameters J,, o, are uniquely defined by means of the coefficients of the
equation, are independent from the given boundary functions and characterize the polar singularities of the
coefficients. These asymptotic conditions are in some sense exact since if we seek the solution of the
Riemann-Hilbert problem in the class satisfying the asymptotic condition O (exp {5 |z -z, |7U }) ,Z =z, and
if at least one from the equalities 6 = J,,0 = g, is not fulfilled then either the homogeneous problem has
infinite number of linearly independent solutions or the non-homogeneous problem is not solvable for any
right-hand side.

In section 1 the abovementioned asymptotic conditions are obtained; the general representation of the
solutions of the Carleman-Vekua equations with the polar singularities satisfying these conditions are
constructed. By means of these results the Riemann-Hilbert problem is correctly posed and is completely
investigated in section 2.

1. The Carlemann-Vekua equations with the polar singularities.
1°. Let G be a bounded complex domain with the boundary I" consisting from closed non-intersecting Lia-
punov smooth T',T,...,[", contours and T, covers all the rest.Let G*be some finite subset of the set G;

G = {Zl,zz,...,zN},N >1.
Consider the Carlemann-Vekua equation

X1 a(z)w+ B(z2) =0, (L1)

4
in the domain G , provided that the coefficient B(z) € L,(G),p >2 and the coefficient 4(z) admits the

following representation

() =a)+ 3 A

Ve’
k=1 |Z—Zk|

(12)

where the function g (z) is holomorphic in G\ G*and has continuous boundary value on T ; the function

A, (z) admits the following representation

A, (Z) =a, (z)exp{inkarg(z—zk )}, (13)
where
a (z)—lk
|z—zk |V"

eLp(G),p>2;

the constants A, ,v,,n, are correspondingly complex, positive and entire numbers for every
k=1,2,..N(ep.[1],[2])-

Under the solution of the equation (1.1) is understood the continuous generalized solution in
G \G"; denote by %(A,B, G\ G*) the set of all possible such solutions (cp. [5]).

2°. Everywhere below the fulfillment of the following condition

A #0:m =1 >2(v, 1) >0,k =1,2,...,N (1.4)

is assumed.

As seen from (1.2) the cﬂcient A(z) has the polar singularities of the form |z—zk|7v’c and the
singularities of the function g(z) in the points z;, . Below it will be established that the structure of the
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14 Giorgi Makatsaria and Nino Manjavidze

solutions of the Carleman-Vekua equation depends on the relationship between the parameters 4, ,v, ,n, and
ifthe required conditions between them are violated then, generally speaking, the assumptions proved below
are not valid.

3°. The following notations we need below

—> 9
z=z;

g = Res®™®) k=1,2,...N;0, =%J.g(t)dt,k —12,...m.
Tl
Fk

Introduce an auxiliary function given by the formula

1160 [ #0300l =5)- L vos(z ),

FS‘OvZ

in the domain G\G". where is some fixed point in G\ G*;F is a smooth contour connecting the
5 gO p g

S0,Z
points ¢,,z and lyingin G\G" ;¢ « s an arbitrary fixed point inside the contour I'; ,k =1,2,...,m. Consider

also the function

F(z):A(z)exp{2ilmf(z)})((z),zeG\G*, 1.5
where
N
A(z) =T (=) 2, (16)
k=1

m N
)((z)zexp{2ZQk 10g|z—rk|+22qk 10g|z—zk|} (1.7)
k=1 k=1

It follows from the conditions (1.4) that 2—v, —n;, # 0,k =1,2,..., N and therefore by the formulas

. 22
§ =——"*%  k=12,.,N
k 2—v,—n, (1.8)

the definite non-zero numbers are given. Assume

*

N

R (z) = ; |Z _ik |VH °exp{i(nk - l) carg (z -z )} , (1.9)
‘P(Z)EF(z)exp{R(z)}. (1.10)

Consider the following Carlenam-Vekua equation

aW* -

+ A (z)wa+ Bo (z) wa =0, (1.11)

0z

where

. (Z) _ N a, (Z) —Vlk emkarg(zfzk)’ B.
k=1 |Z_Zk|k lP(Z)
It is easyto see, that 4 (z),B.(z) € L » (G),p>2 andhence (1.11) s the regular Carleman-Vekua equation.

The following theorem takes place.
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Theorem 1.1. By the following relation
Wa (z)=‘P(z)w(z),zeG\G* (1.12)

(w* R (4B, G\G*),wem(A,B,G\G*)),

the bijective correspondence between the classes %(A,B,G \ G*) and 9‘{(14*,3*, G\ G*) is established.

Proof. One can check directly the following inequalities

GF?EZ)= ( ) E,W=exp i Z *exp znk-arg(z zk)}

=1 |Z Zk|

N _
o¥(z) . l—kv,exp{l-nk.arg(z—zk)}Jrg(z) .
k=1 |Z_Zk| ‘

It is clear that by means of the relation ( 1.12 ) the bijective correspondence is also established between the

classes
R(4.,8.,G\G")~C(G\G"), %®(4,8,6\G")~C(G\G").
4° Let 6 = (51,52,...,5N) and o = (01,02,...,GN) are given N -dimensional vectors with the non-

nega-tive components. Denote by €, [5,6] the class of all possible functions from the
set R (A, B,G\ G ) satisfying the condition

w(z)= O(exp{ék |2z [** })z = z;,k=12,...,N. (1.13)

Denote by 9_0[5 ,0'] the class of all possible functions from the set €, [5 ,G] admitting the continuous
extension in ((_;\ G ) By s* and ,* the following vectors are denoted

5" E( 71,1851, ..,‘5;‘),v* =(vi—Lvy —L...,vy —1).

The class of the solutions €, [5 *,v*} is very important class in what follows.

The following theorem occurs.

Theorem 1.2. If for some value k of the index the inequality 6; < ‘5;‘ is fulfilled then the class Q,, [5 ,v*]
is a trivial class (i.e. it contains only zero functions).

The proof of the theorem 1.2 follows easily from the works [3], [4].

Straight from the theorem 1.2 it follows that if for some value  ofthe index the inequality o, <v, —1is
fulfilled then for every vector § the class Q, [5 ] is a trivial class.

Therefore, if o, =v; -1,k =1,2,..., N and for some k, the inequality &, ‘5;{ ‘ is fulfilled or if for some
ko the inequality oy, <V, —1 is fulfilled then the class Q, [5 ] is a trivial class.

It is natural to investigate the class €, [5 , G]. The following theorem gives us the representation of the
solution of this class.

Theorem 1.3. By means of the relation (1.3) the bijective correspondence between the clas-ses

Q6" v (267" ]), (4. B..G)(R(4.8.G) ~C(G))
is established.
2. Investigation of the Riemann-Hilbert boundary value problem.
In order to pose correctly the Riemann-Hilbert boundary value problem it is clear from the abovemen-tioned
results that it is sufficient to require from the solution of the equation (1.1) the fulfillment of the asym-ptotic
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16 Giorgi Makatsaria and Nino Manjavidze

condition of the form

w(z) = O(exp {‘5;

Z—Zk|7vk+l}),2—>zk,k=l,2....,N. (*)

In the present section the proof of sufficiency of asymptotic condition (*) is given and the boundary
value problems are investigated.

Consider the following boundary value problem: on the boundary T the Holder continuous functions
A (t) and )/(t) are given, ¥ (t) isareal function and |l (t)| =1 find the function w(z) € 9_0[5, 0'] satisfying
the boundary equation

Re{a(tpw(0)| =7 (1), reT. @)

From the theorem 1.2 it follows that in case )/(t) #0 the problem (2.1) is not solvable in the class
9_0[5,0'] if o, =v, —1 for some f orif o, =v, —Lk=12,...,N, but 5; < 5;‘ for some .

Let 6, # 0,0, 2v, —Lk=1,2,...,N. Denote by 7{ the set of all possible values f of the index for which

5. <[5

The following theorem takes place.

Theorem 2.1. The homogeneous boundary value problem (2.1) ()/(t) = 0) in the class €, [5, 0'] has
infinite number of linearly independent solutions if and only if when one from the following conditions is
Sulfilled:

A

1) H=@;§:(5k+ak)>2(

k=1 1
D) H2T;0, >v, —LkeH.
Proof. Let the first condition 1) be fulfilled. Then for all £ =1,2,..., N the following inequalities hold
O = ‘5;‘ +V; —1, and there exists at least one k =k, for which the strict inequality is fulfilled

N
+vk—1);
k=

8 + oy > ‘5;0‘+ka -1, (2.2)

From this last inequality follows that one from the inequalities 5k0 2 ‘5;:1) ‘,G t ZVk, -1 is also strict. Let
Sy, >‘5;0‘ and let us fix an arbitrary number § > 0. Consider the solutions w.(z)from the class
R (A* ,B.,G\ G ) which are representable in the form

Oz
e (2) =2 (o))
s (23)
(-2,)
where © (z) is holomorphicin G and continuous in G function. It is easy to see that every function of the
form (2.3) defines the solution w(z) of the equation (1.1) of the class 30[5, 0'] by means of the relation
(1.12). Further on, we can see that by the relation

we(z) = % 2.4)

the bijective correspondence between the class of all functions of the form (2.3) and the class

Z—Zk0

n A*,B*,(_ _] .G |C(G)

z _Zko

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 3, 2015



The Riemann-Hilbert Boundary Value Problem ... 17

of the solutions of the equation

O +A*(z)w0+3{f_zﬁJ @y = 0. 25)

is established.
Together with the problem (2.1) consider the following boundary value problem: find the generalized solution
of the problem (2.5) continuous in G and satisfying the boundary condition

rel M)l rer 26)

(t—zko )X ¥(¢)

It is clear that by the formulas (2.4), (1.12) every system of linearly independent solutions of the problem (2.6)
defines the system of linearly independent solutions of homogeneous problem (2.1). On the other hand the

number of linearly independent solutions of the problem (2.6) ] satisfies the inequality

[ >2ind Lt) —m+1 2.7)

(7-z, ) ¥()

by virtue of which we get

N
[> 2[indl(t)+S+ Z[2Reqk] -m+1.

k=1
From here it follows that if an appropriate choice of § the number ; will be arbitrarily big and therefore the
homogeneous problem (2.1) has infinite number of linearly independent solutions. One can prove similarly
that the set of linearly independent solutions of the homogeneous problem (2.1) is infinite in case
O, > Vi, ~ L0y, = ‘5;0 ‘ Hence we obtain that if the condition 1) is fulfilled then the homogene-ous problem
(2.1) has the infinite number of linearly independent solutions.
Let now the condition 2) be fulfilled. Then on the basis of the relation

8,600 <a, 57,01
which follows directly from the conditions
s 20k=12...No? >0 ken.

we get that the homogeneous problem (2.1) has infinite number of linearly independent solutions. The
sufficiency of one of the conditions 1), 2) is proved. Let us prove the necessity.

Let the homogeneous problem (2.1) have infinite number of linearly independent solutions and the set
‘H # & ,then forevery e H wehave o, >v, —1.Indeed, if for at least one k, € H wehave oy >V, -1,
then on the basis of the theorem 1.2 the class Q, [5 ,o-] would consist from only zero elements; we get a

contradiction and so, when 7 = ¢ the condition 2) is fulfilled.
Let now H = & , then prove that

N N
;wk —Gk)>;(‘5;‘+vk —1) 28

1 1
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Indeed, otherwise it would be

N N
Z(5k+0'k Z(‘5k‘+vk ) 2.9)

k=1
and therefore 0, = ‘5,{‘ o, =v,—Lk=L2,..,N.  Hence we would obtain that the homogeneous problem
(2.1) has infinite number of linearly 1ndependent solutions in the class €2 [5 v } but this problem has
finite number of linearly independent solutions. Really, by virtue of the theorem 1.3 using the relation (1.12)
the bijective correspondencies established between the solutions of the problem (2.1) and the following
boundary value problem: find the generalized solution of the equation

aW*
oz

continuous in the domain G satisfying the boundary condition

+ A (2)wa (1) + Bowi =0, (2.10)

Re{i((?) w*(t)}=y(t), tel. Q.11)

The homogeneous problem (2.10)-(2.11) ( 4 (t ) = 0) on the basis of [5 ] has finite number of linearly
independent solutions. Hence, the homogeneous problem (2.1) has finite number of linearly independent
solutions in the class 9_0[5 v } Therefore, the condition (2.9) is not fulfilled and thus (2.8) is fulfilled. The
theorem 2.1 is completely proved.

Consider the boundary value problem: find the generalized solution continuous in the class G of the

equation

— A (z)w (2) = B (z)me =0, (2.12)

satisfying the boundary condition

Re{&t' (s)w;(r)}=0,ter. 2.13)

It is easy to see that the number of linearly independent solutions of the problem (2.13) /s is finite and it is
clear that for the problem (2.10) to be solvable it is necessary and sufficient the fulfillment of equality

At
[ v ar=s o
for every solution of the problem (2.13).

On the basis of above obtained results the following theorem becomes evident.

Theorem 2.2. The homogeneous problem (2.1) in the class 9_0[5*,\/*} has finite number of linearly
independent solutions and the non-homogeneous problem is solvable if and only if the condition (2.14) is
Sulfilled.

Let ; be a number of linearly independent solutions of the homogeneous problem (2.1). By means of

following evident equality

znc{ ( } Z[ZReqk]
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it follows the validity of the next problem.
Theorem 2.3. The following equality

N
I=l=2n+2) [2Req, |-m+1
k=1

takes place, where ¢, is aresidue of the function q(z) in the point z, .

From the results obtained above in particular we get the theorem.

Theorem 2.4. For the problem (2.1) to be Noetherian in the class Q_0[5 , 0'] it is necessary and sufficient
to fulfill the condition

o= 5*,0 =v".

3‘)0933‘)(50 39

60305—30@636&01} 1&.)15.)%;23(4)0) .)30)0.55.) doﬁ)gaabs—

33‘5'3.)15 305(500;236013&0’)301} 3(*);&05)*3(20
3.55150 d'amﬁ)abagmaabom

a- 8535396057, 6. 356x350dg9™

* Zh)jdﬁmgﬂg)mlj Zso&)@ﬁaoﬁjﬁ)b EHOQ?Q QEQﬁOJ JOﬁJLf]g\nﬁ’mQLf]t}ngb Z}JBL‘]Q(’H}OZJ j&ﬁm{yﬂna 2750&76[}0@‘7@0,
mdocrolo

**OQJOQZJ Zjdbﬂ@ﬁﬁ’ogm 27503316150(53(50, m[fm@ol}o

(%’oéamgaaﬁomoa 33909d00b 30l 3. 3m3oemadzomols 303(4))
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