
saqarTvelos  mecnierebaTa  erovnuli  akademiis  moambe,  t. 9, #3, 2015

BULLETIN  OF  THE  GEORGIAN  NATIONAL  ACADEMY  OF  SCIENCES,  vol. 9, no. 3, 2015
 

© 2015  Bull. Georg. Natl. Acad. Sci.

Mathematics

The Riemann-Hilbert Boundary Value Problem for
Carleman-Vekua Equation with Polar  Singularities

Giorgi Makatsaria* and Nino Manjavidze**

*  Saint Andrew The First Called Georgian University of Patriarchate of Georgia, Tbilisi
**Ilia State University, Tbilisi

(Presented by Academy Member Vakhtang Kokilashvili)

ABSTRACT. The paper deals with the Riemann-Hilbert boundary value problem for the Carleman-
Vekua equation with polar singularities. Index formula and criteria of solvability are obtained.
© 2015 Bull. Georg. Natl. Acad. Sci.

Key words: Carleman-Vekua equation, polar singularity,boundary value problem.

In the present work for the Carleman-Vekua equation

    0w A z w B z w
z


  


(C-V)

with the polar singularities the Riemann-Hilbert boundary value problem

       ,  Γ,Re t w t t t   (R-H)

in the domain G  is investigated. G  is a finite 1m  -connected domain of the complex plane z x iy   with
sufficiently smooth boundary provided that the given functions  t  and  t  are the Holder continuous
functions.

It is well-known that the equation (C-V) in case of regular coefficients (i.e.      , pA z B z L G for some
2p  ) the condition   0,  Γt t   provides the Noetherity of the problem (R-H)  in the class of continuous

in  0\G z functions satisfying the equation (C-V) in  0\G z  and the asymptotic conditions

 0 0,  .O z z z z   Here 0z  is some point in the domain G  and   is some real number..

For the Carleman-Vekua equation with the polar singularities the situation is essentially different. It is
known that there exists sufficiently wide class of equations  permitting  only trivial solutions in the domain

 0\G z  and satisfying the asymptotic conditions  0 0,  ,O z z z z   where 0z is the point of polar
singularity of the equation (C-V),   is a real number. Therefore it makes no sense to consider the boundary
value problems in this class. On the other hand if there are no restrictions on the solutions in the neighborhood
of the singular point 0z  then it may occur that the homogeneous boundary problem has infinite number of
linearly independent solutions.
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In this work for the Riemann-Hilbert problem the Noetherity conditions in particular like asymptotic
conditions   0

0 0 ,  oO exp z z z z    for sufficiently wide class of the Carleman-Vekua equations are
obtained. Here the constant parameters 0 , 0  are uniquely defined by means of the coefficients of the
equation, are independent from the given boundary functions and characterize the polar singularities of the
coefficients. These asymptotic conditions are in some sense exact since if we seek the solution of the
Riemann-Hilbert problem in the class satisfying the asymptotic condition   0 0,, O exp z z z z    and
if at least one from the equalities 0 0,      is not fulfilled then either the homogeneous problem has
infinite number of linearly independent solutions or the non-homogeneous problem is not solvable for any
right-hand side.

In section 1 the abovementioned asymptotic conditions are obtained; the general representation of the
solutions of the Carleman-Vekua equations with the polar singularities satisfying these conditions are
constructed. By means of these results the Riemann-Hilbert problem is correctly posed and is completely
investigated in section 2.
1. The Carlemann-Vekua equations with the polar singularities.
10. Let G  be a bounded complex domain with the boundary Γ  consisting from closed non-intersecting Lia-
punov smooth  0 1Γ , Γ ,  , Γm contours and 0Γ  covers all the rest.Let *G be some finite subset of the set ;G

 *
1 2, , , ,  1. NG z z z N  

Consider the Carlemann-Vekua equation

    0,w A z w B z w
z


  


(1.1)

in the domain G , provided that the coefficient     ,  2 pB z L G p  and the coefficient  A z  admits the
following representation

     
1

,
k

N
k

k k

A z
A z g z

z z 


 


 (1.2)

where the function  g z is holomorphic in *\G G and has continuous boundary value on Γ ; the function
 kA z  admits the following representation

       ,k k k kA z a z exp in arg z z  (1.3)

where

    ,  2;
k

k k
p

k

a z
L G p

z z 


 



the constants ,  , k k kn   are correspondingly complex, positive and entire numbers for  every
    1, 2,..,   . 1 , 2 . k N cp

Under the solution of the equation (1.1) is understood the continuous generalized solution in
*\ ; G G denote by  *,  , \A B G GR  the set of all possible such solutions (cp. [5]).

20. Everywhere below the fulfillment of the following condition

 0;  1 2 1 0,  1,2, ,k k kn k N        (1.4)

is assumed.
As seen from (1.2) the coefficient  A z  has the polar singularities of the form k

kz z   and the
singularities of the function  g z  in the points kz . Below it will be established that the structure of the
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solutions of the Carleman-Vekua equation depends on the relationship between the parameters ,  , k k kn  and
if the required conditions between them are violated then, generally speaking, the assumptions proved below
are not valid.

30. The following notations we need below

   
Γ

1,  1, 2,  , ;  ,  1, 2,  , .
2k

k

g z
k kz zq Res k N Q g t dt k m

i     
Introduce an auxiliary function given by the formula

       
,0

1 1Γ

log log ,
z

m N

k k k k
k k

f z g t dt Q z q z z



 

     

in the domain *\ , G G where 0  is some fixed point in 
0

*
,\ ;Γ zG G   is a smooth contour connecting the

points 0 , z  and lying in *\ ; kG G   is an arbitrary fixed point inside the contour Γ ,  1, 2,  ,  . k k m  Consider
also the function

         *Λ 2 ,  \ ,F z z exp iImf z z z G G  (1.5)

where

    2

1

Λ ,k
N

Req
k

k

z z z   



  (1.6)

 
1 1

2 log 2 log .
m N

k k k k
k k

z exp Q z q z z 
 

      
  
  (1.7)

It follows from the conditions (1.4) that 2   0,  1, 2,  ,k kn k N      and therefore by the formulas

* 2
,  1,2, ,

2  
k

k
k k

k N
n





  

  (1.8)

the definite non-zero numbers are given.  Assume

      
1

*

1

1 ,
k

N
k

k k
k k

R z exp i n arg z z
z z 






  


   (1.9)

      Ψ .z F z exp R z (1.10)

Consider the following Carlenam-Vekua equation

   *
* * * * 0,w A z w B z w

z


  


(1.11)

where

           
 * *

1

Ψ
,   .

Ψ
k k

k

N
in arg z zk k

k k

a z B z z
A z e B z

zz z 

 




 




It is easy to see, that      * *, ,  2pA z B z L G p   and hence (1.11) is the regular Carleman-Vekua equation.
The following theorem takes place.
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Theorem 1.1. By the following relation

      *
* Ψ ,  \w z z w z z G G  (1.12)

    * *
* * *,  ,   \ ,  ,  ,  \w A B G G w A B G G R R ,

the bijective  correspondence between the classes  *,  ,  \A B G GR  and   *
* *,  ,   \A B G GR  is established.

Proof. One can check directly the following inequalities

     
  

     
1

,   ,
k

N
k

k k
k k

exp R zF z
F z g z exp R z exp in arg z z

z z z z 





  

  
  

        
1

Ψ z
Ψ .

k

N
k

k k
k k

z exp in arg z z g z
z z z 





 
   

   
  

It is clear that by means of the relation ( 1.12 ) the bijective correspondence is also established between the
classes

       * * * *
* *,  ,  \ \ ,       ,  ,  \ \ .A B G G C G G A B G G C G G R R

40. Let  1 2,  , ,  N      and  1 2,  , ,  N       are given N  -dimensional vectors with the non-
nega­tive  components.  Denote  by   0Ω ,    the class of all possible functions from the
set  *, , \A B G GR satisfying the condition

     ,  ,  1, 2,  ,  .k
k k kw z O exp z z z z k N      (1.13)

 Denote by  0Ω ,    the class of all possible functions from the set  0Ω ,  admitting the continuous
extension in  *\ .G G  By * and *  the following vectors are denoted

   * * * * *
1 2 1 2,  ,  ,  ,  1,  1, , 1 .N N             

The class of the solutions * *
0Ω ,  
  is very important class in what follows.

The following theorem occurs.
Theorem 1.2. If for some value k  of the index the inequality *

k k   is fulfilled then the class *
0 ,    

is a trivial class ( i.e. it contains only zero functions).
The proof of the theorem 1.2 follows easily from the works [3], [4].
Straight from the theorem 1.2 it follows that if for some value  k of the index the inequality 1k k    is

fulfilled then for every vector    the class  0Ω ,   is a trivial class.
Therefore, if 1,  1, 2, ,k k k N     and for some 0k  the inequality 

0 0

*
k k   is fulfilled or if for some

0k  the inequality 0 0
1k k    is fulfilled then the class  0Ω ,  is a trivial class.

It is natural to investigate the class  0Ω , .   The following theorem gives us the representation of the
solution of this class.

Theorem 1.3. By means of the relation (1.3) the bijective correspondence between the clas­ses

        * * * *
0 0 * * * *, , ,   , , , , A B G A B G C G           R R

is established.
2. Investigation of the Riemann-Hilbert boundary value problem.

In order to pose correctly the Riemann-Hilbert boundary value problem it is clear from the abovemen-tioned
results that it is sufficient to require from the solution of the equation (1.1) the fulfillment of the asym­ptotic
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condition of the form

    1* ,  ,  1, 2 .,  .k
k k kw z O exp z z z z k N        (*)

In the present section the proof of sufficiency of asymptotic condition (*) is given and the boundary
value problems are investigated.

Consider the following boundary value problem: on the boundary Γ the Holder continuous functions
 t and  t are given,  t  is a real function and   1t  ; find the function    0Ω ,w z     satisfying

the boundary equation

        ,      Γ .Re t w t t t   (2.1)

From the theorem 1.2 it follows that in case   0t    the problem (2.1) is not solvable in the class
 0Ω ,   if  1k k    for some k  or if 1,  1, 2,  , ,k k k N      but *

k k   for some .k
Let 0,  1,  1, 2,  , . k k k k N       Denote by   the set of all possible values  k of the index for which

* .k k 

The following theorem takes place.
Theorem 2.1. The homogeneous boundary value problem (2.1)   0t   in the class  0    ,   has

infinite number of linearly independent solutions if and only if when one from the following conditions is
fulfilled:

1)    *

1 1

; 1 ;
N N

k k k k
k k

    
 

     

2) ; 1,  .k k k      

Proof. Let the first condition 1) be fulfilled. Then for all 1, 2,  ,k N   the following inequalities hold
* 1,k k k     and there exists at least one 0k k  for which the strict inequality is fulfilled

0 0 0 0

* 1,k k k k       (2.2)

From this last inequality follows that one from the inequalities 
0 0 0 0

* ,   1k k k k       is also strict. Let

0 0

*
k k   and let us fix an arbitrary number 0. S  Consider the solutions  *w z from the class
 *

* *,  , \A B G GR  which are representable in the form

   
 

  
0

*
Φ

,s
k

z
w z exp z

z z


 (2.3)

where  Φ z  is  holomorphic in G  and continuous in G   function. It is easy to see that every function of the
form (2.3) defines the solution  w z of the equation (1.1) of the class  0 Ω ,    by means of the relation
(1.12). Further on, we can see that by the relation

   
 0

0
* s

k

z
w z

z z




 (2.4)

the bijective correspondence between the class of all functions of the form (2.3) and the class

 0

0

* *,  ,  , 

s
k

k

z z
A B G C G

z z

         
R
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of the solutions of the equation

  0

0

0
* 0 * 0 0.

s
k

k

z z
A z B

z z z


 
     
   

(2.5)

is established.
Together with the problem (2.1) consider the following boundary value problem: find the generalized solution
of the problem (2.5) continuous in G  and satisfying the boundary condition

 
   

 
0

0 0,    Γ.
Ψ

s
k

t
Re t t

t z t




 
    
  

(2.6)

It is clear that by the formulas (2.4), (1.12) every system of linearly independent solutions of the problem (2.6)
defines the system of linearly independent solutions of homogeneous problem (2.1). On the other hand the
number of linearly independent solutions of the problem (2.6) l  satisfies the inequality

 

   
0

2 1
Ψ

s
k

t
l ind m

t z t


 
    
 
 

(2.7)

by virtue of which we get

 
1

2 2 1.
N

k
k

l ind t S Req m


 
        
 


From here it follows that if an appropriate choice of  S the number l  will be arbitrarily big and therefore the
homogeneous problem (2.1) has infinite number of linearly independent solutions. One can prove similarly
that the set of linearly independent solutions of the homogeneous problem (2.1) is infinite in case

0 0 0 0

*1,  .k k k k      Hence we obtain that if the condition 1) is fulfilled then the homogene­ous problem
(2.1) has the infinite number of linearly independent solutions.
Let now the condition 2) be fulfilled. Then on the basis of the relation

       1 1 2 2
0 0Ω , Ω , ,            

which follows directly from the conditions
     2 2 10,  1, 2, , ;  ,  .k k kk N k      

we get that the homogeneous problem (2.1) has infinite number of linearly independent solutions. The
sufficiency of one of the conditions 1), 2) is proved. Let us prove the necessity.

Let the homogeneous problem (2.1) have infinite number of linearly independent solutions and the set
 , then for every k we have 1k k   . Indeed, if for at least one 0k   we have 0 0

1k k   ,
then on the basis of the theorem 1.2 the class  0Ω ,   would consist from only zero elements; we get a
contradiction and so, when    the condition 2) is fulfilled.
Let now  , then prove that

   *

1 1

1
N N

k k k k
k k

   
 

     (2.8)
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Indeed, otherwise it would be

   *

1 1

1
N N

k k k k
k k

   
 

     (2.9)

and therefore * ,  1,  1, 2,  , .k k k k k N         . Hence we would obtain that the homogeneous problem
(2.1) has infinite number of linearly independent solutions in the class * *

0Ω , ,   
  but this problem has

finite number of linearly independent solutions. Really, by virtue of the theorem 1.3 using the relation (1.12)
the bijective correspondencies established  between the solutions of the problem (2.1) and the following
boundary value problem: find the generalized solution of the equation

   *
* * * * 0,w A z w t B w

z


  


(2.10)

continuous in the domain G  satisfying the boundary condition

 
     * ,   Γ.

Ψ
t

Re w t t t
t




     
  

(2.11)

The homogeneous problem (2.10)-(2.11)   0t   on the basis of [5 ] has finite number of linearly
independent solutions. Hence, the homogeneous problem (2.1) has finite number of linearly independent
solutions in the class * *

0Ω , .  
   Therefore, the condition (2.9) is not fulfilled and thus (2.8) is fulfilled. The

theorem 2.1 is completely proved.
Consider the boundary value problem: find the generalized solution continuous in the class G  of the

equation

     
'

' '*
* * * * 0,w A z w t B z w

z


  


(2.12)

satisfying the boundary condition

 
 

   ' '
*  0,  Γ.

Ψ

t
Re t s w t t

t

     
  

(2.13)

It is easy to see that the number of linearly independent solutions of the problem (2.13) *l is finite and it is
clear that for the problem (2.10) to be solvable it is necessary and sufficient the fulfillment of equality

 
 

   '
*

Γ

0
Ψ

t
t w t dt

t


  (2.14)

for every solution of the problem (2.13).
On the basis of above obtained results the following theorem becomes evident.
Theorem 2.2. The homogeneous problem (2.1) in the class * *

0 ,      has finite number of linearly
independent solutions and the non-homogeneous problem is solvable if and only if the condition (2.14) is
fulfilled.

Let l  be a number of linearly independent solutions of the homogeneous problem (2.1). By means of
following evident equality

  1

1 2
Ψ

N

k
k

ind Req
t 

 
      
 


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it follows the validity of the next problem.
Theorem 2.3. The following equality

*
1

2 2 2 1
N

k
k

l l n Req m


      
takes place, where kq  is a residue of the function  q z  in the point kz .

From the results obtained above in particular we get the theorem.
Theorem 2.4. For the problem (2.1) to be Noetherian in the class  0 ,   it is necessary and sufficient

to fulfill the condition
* *,  .    

maTematika

riman-hilbertis sasazRvro amocana karleman-
vekuas gantolebisaTvis polaruli
gansakuTrebulobebiT

g. maqacaria*, n. manjaviZe**

* saqarTvelos sapatriarqos wmida andria pirvelwodebulis saxelobis qarTuli universiteti,
  Tbilisi
**ilias saxelmwifo universiteti, Tbilisi

(warmodgenilia akademiis wevris v. kokilaSvilis mier)

naSromSi ganxilulia riman-hilbertis sasazRvro amocana karleman-vekuas
gantolebisaTvis polaruli gansakuTrebulobebiT.
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