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ABSTRACT. In this work we consider a method for solving linear partial differential equations,
specially heat and waves equations that describe behavior of temperature distribution and wave propaga-
tion in one or multidimensional environments by moving least squares procedure. We present some
illustrative examples and compare our proposed method with other methods to show the efficiency of this
method. © 2015 Bull. Georg. Natl. Acad. Sci.

Key words: partial differential equations; moving least squares; approximation.

1. Introduction

Historically, Partial Differential Equations (PDE) originated from the study of surfaces in geometry and for
solving a wide variety of problems in mechanics.

It is well known that most of the phenomena that arise in mathematical physics and engineering fields can
be described by PDE. In Physics for example, the heat flow and the wave propagation phenomena are well
described by partial differential equations [1, 2]. In ecology, most population models are governed by partial
differential equations [3, 4].

The Moving Least Squares (MLS) as approximation method has been introduced by Shepard [5], in the
lowest order case and generalized to higher degree by Lancaster and Salkauskas [6].

In the recent years some works have been done on MLS method and it had been used in many fields of
mathematics to reach an approximate solution of a problem at a fixed point, especially in the scattered data
approximation [7-13]. Some works have been done for error estimate and error analyzes of the MLS method
[14, 15]. Let  be a subset on d  and  be the bound of this set. In this work we consider the following
equation
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 (1.1)

where  and  are linear operators on an unknown function u , also the function  f named source term
and q are given. In this paper we want to use MLS method at a set of points such as    kx  and construct a
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set of approximations of the unknown function u over the domain  and finally we present the Root Mean
Square (RMS) error.

There are various methods for solving a PDE such as Adomian Decomposition Method (ADM), and the
Variational Iteration Method (VIM), Finite Integration Method (FIM), Finite Element Method (FEM) and
Boundary Element Method (BEM), Radial Basis Functions (RBFs) and vary other methods [1, 4, 16, 17, 18]. In
this paper we compare the proposed MLS method with the methods which W. Li et al proposed in [18].

The structure of this paper is as follows: in Section 2 we reintroduce the moving least squares method in
the general form. In Section 3 we use MLS method for solving PDEs. There are some examples in Section 4 to
demonstrate the efficiency and accuracy of the proposed method. Section 5 consists of a brief conclusion.

2. Moving Least Squares

Suppose that u be a multivariate function on a domain   d . We want to approximate u at a certain
point   x by using some points in a neighborhood of   x . Let the values of u on a set of nodes

 1 2  , , ,  NX x x x    from its domain are known. We consider an approximate value for u , on a given
point  x , as follows:
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      ,     ,  ˆ  
m

T
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u x u x P x p x x


   α  (2.1)

where    ( ) ( 1 , 2 , , ( ))  T
iP x     p x  p x  pm x is a m -dimensional basis of functions and α  is a vector of

parameters to be determined. Let x be a   neighborhood of a fixed point    x . The parameter     , which
usually called smoothing length or dilatation parameter in the mesh free literature, is a certain characteristic
measure of the size of the  support x . Thus for a fixed point  x , we try to solve the following minimization
problem
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where

  , 2
  1, 2, , :   ,x iI i N x x     

and also :  dw  is a nonnegative function with support in the unit ball  0,1 B , which is positive on the
ball B (0, 0.5) and it is called weight function. Now for constructing the matrix form of problem (2.2) we
introduce the following notations:
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(2.3)

where cx is the cardinal of , . xI  By regarding to notations (2.3), problem (2.2) can be rewritten as follows:

                                      {    | } ,                                   mmin M    (2.4)

where M is a quadratic function with respect to m -tuple , and has the following matrix form:

        
,

2

   x x x

x

T
ii i

i I

M U P w x x


   


  



28 Hassan Mafikandi and Majid Amirfakhrian

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 3, 2015

              .
x x x x x

TT TU P W U P       

So that we have

                   2 
x x x x x x x x x

T T TM U W U P W U P W P              . (2.5)

Suppose that with suitable conditions *α  be solution of (2.4) it requires that first ingredient derivatives in
*α  must be zero, in other words the gradient vector should be zero at *α :

      0M *α ,

thus

         2 2 0
x x x x x x

TP W U P W P         ,

which implies that

           .
x x x x x x

TP W P P W U         (2.6)

The system (2.6) is a system of m linear equations with m unknowns. If the number of points inside of  m
is less than the number of the basic functions x  then the matrix of coefficients can be singular so that we

have to apply a numerical method such as least squares to solve it, otherwise system (2.6) has a unique

solution [19- 21]. We substitute the solution of the system (2.6) *α  in (2.1) and achieve an approximation to
function u in the neighborhood of x [13].

3. Approximating Partial Differential Equation’s solution by MLS

We want to approximate inhomogeneous PDE’s solution with boundary conditions by Moving Least Squares
(MLS). For this purpose we consider a set of nodes over defined domain regard to the boundary conditions,
and then we separate nodes into two groups, those are on bound and those are inside the domain.

For  1 2  , , ,       d
NX x x x   , we denote the set of boundary points by B and the set of inner points

by I.

 , ,         :      , B
x x iI i I x   

, , ,\ .       I B
x x xI I I  

We use the space of multivariate polynomials of degree n with d variables for constructing the approximate

solution of PDE (1.1). Let  1 2,  ,  ,  mp p p  be a basis of the space, so that   
d n

m
n
 

  
 

. We set

   
1

  ,
m

j j
j

u x p x

  as a solution of the Equation (1.1). We analogously set a fixed point  x   and a 

neighborhood x  of this point. In general x  may includes some points of B and others in I, so we must

solve the following minimization problem:
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(3.1)

where :  dw    is a weight function. Considering operators   and   in (1.1), (3.1) will be changed to the
following form:
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(3.2)

Considering ,           B
xr I   and ,        I

xs I   which notation   denotes the cardinal of a set, we construct the

matrix form of the introduced problem in (3.2) by the following notations
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(3.3)

Now we can rewrite the problem (3.2) as follows:

     |    ,mmin M   (3.4)

where M is a quadratic function of m-tuple α .  M α has the following form:

           
, ,

22
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In regarding to notations (3.3) we have the following matrix form for  M α :

    2    

  2     .

T T T T
B B B B B B

T T T T
I I I I I I

M Q W Q P W Q P W P

PW P PW F F W F

   

  

  

  
(3.5)

If the coefficient matrices are positive definite then  M α  has a minimum and we can use the necessary

condition     0 M α  to find   . Thus
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    2 2 2 2 0.T T
B B B B B I I I I IM P W Q P W P PW P PW F       

Finally we have the following system of linear equations

           T T
B B B I I I B B I IP W P PW P P W Q PW F     , (3.6)

which is a linear system of m equations with m unknowns. We obtain *  by solving the system (3.6) and by

substituting *  in  
1

m

j j
j

p x

 , we will have an approximation for  u x .

4. Numerical Examples

In this section we approximate solution of inhomogeneous and homogeneous PDEs with boundary and
initial conditions in some determined nodes from [4] and [18]. The Root Mean Square (RMS) errors for our
method is demonstrating the accuracy of the method. RMS error is defined as follows: Let for

 1, 2,  , ,s ii N u x   are exact values of solution function u at nodes xi and  appr iu x  are corresponding

approximation values on those nodes, the RMS error is defined by

    2
1RMS
sN

i appr ii

s

u x u x
N




   
(4.1)

[22].
Also in Examples 4.5 and 4.6, to compare the mentioned method with other methods we use other criteria such
as average relative error ARE and average error AE which are defined in the following definition. With
analogous assumptions in Definition of RMS, the average relative error ARE and the average error AE are

   
 1

1     
max 

sN
i appr i

is

u x u x
ARE

N u x


 

 
, (4.2)

and

   
1

1   
sN

i appr i
is

AE u x u x
N 

    , (4.3)

[18].

               n                               
g , h 1 2 3 4 5 6 

g = 9, h = 3 

g = 18, h = 6 

1.27e-01 

1.41e-01 

6.64e-02 

7.66e-02 

3.18e-02 

3.46e-02 

5.37e-02 

1.29e-02 

2.76e-02 

2.68e-03 

1.66e-02 

4.65e-04 

Table 1. RMS errors for Example 4.1

Table 2. RMS errors for Example 4.2

               n                               
g , h 

1 2 3 4 5 6 

g = 9, h = 3 

g = 18,h =6 

   7.53 e-02 

9.04 e-02 

     3.07 e-02 

3.74 e-02 

1.79 e-02 

1.84 e-02 

6.47 e-02 

1.11 e-02 

9.53 e-03 

2.37 e-03 

2.28 e-03 

5.56 e-04 



Solving Linear Partial Differential Equations 31

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 3, 2015

In the following examples our goal is approximating the values of the unknown function u at some points
in the region  . In Examples 4.1- 4.3, without loss of generality just for simplicity and in regarding to the
initial and boundary conditions of problem, we take a regular nodes in   which their abscissas and ordinates
are equally spaced and we call  that rectangular region. In other examples  may be different by regarding
to conditions of problem.

Example 4.1. Consider the following inhomogeneous heat equation
sint xxu u x  ,    0 ,   0,x t   (4.4)

with boundary and initial conditions:

 BC   :      ,0, tu t e 0,t 

    , ,tu t e   0,t 

  :     ,0 cos  . IC u x x

The exact solution of (4.4) with respect to its boundary and initial conditions, is

   , 1 sin cos  .t tu x t e x e x   

In order to approximate values of u we consider     1      1 g h   regular nodes (their abscissas and ordinates

are equally spaced) on    0, 0,T     ,   1 T  , that means the number of partitions in x and t directions are

g and h, respectively and apply the proposed MLS method on those nodes. The weight function is

  2
2

1, .
1i

i

w x x
x x


  

 We use bivariate polynomials     2d   of degree at most n. RMS error for different

amounts of , g h  and different basis functions of degree n are shown in Table 1.

Example 4.2. Consider the following homogeneous heat equation
,t xxu u u      0 ,   0,x t   (4.5)

with boundary and initial conditions:

 BC   :      ,0, 0u t  0,t 

    , 0,u t  0,t 

Table 3. RMS errors for Example 4.3

               n                           
g , h 

1    2 3 4 5 6 

g = 9,  h = 3 

g = 18, h = 6 

2.70 e-01 

3.24 e-01 

8.67 e-02 

7.94 e-02 

1.32 e-02 

1.15 e-02 

3.47 e-03 

2.68 e-03 

4.49 e-04 

3.72 e-04 

1.72 e-04 

7.72 e-05 

Table 4. RMS errors for Example 4.4

                           n                               
g , h, k 1 2 3 4 

g = 9,   h = 3, k=2 

g = 18, h = 6, k=4 

1.37 e-01 

3.13 e-01 

    3.65 e-02 

5.04 e-02 

2.51 e-02 

1.22 e-02 

3.47 e-03 

2.81 e-03 
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  :     ,0 sin   . IC u x x

The exact solution of (4.5) regarding to above boundary and initial conditions, is

  2, sintu x t e x .

We set analogues assumptions such as those in the Example 4.1. RMS error for different amounts of g, h
and various number of basic functions are shown in Table 2.

Example 4.3. Consider the following inhomogeneous wave equation
  2tt xxu u  , 0 ,   0,x t   (4.6)

with boundary and initial conditions:

 :          0, 0,               0,BC u t t 

  2   ,  ,           0,u t t  

  2:          ,0 , IC u x x

     ,0 sin . tu x x

The exact solution of (4.6) under the above conditions, is

  2,              .u x t x sin x sint 

By taking the integral of (4.6) two times and using the initial conditions, we have

Fig. 1. RMS error for various number of n and density of mesh for Example 4.4

method 

 ݏܰ
MLS OLA MQ LF TPS 

10 

20 

30 

1.4823 e-11 

1.5024 e-14 

1.2051 e-14 

1.9110 e-02 

5.6890e-03 

1.3820 e-02 

1.3707 e-02 

5.3650e-03 

3.0830 e-03 

1.7554 e-02 

6.4620 e-03 

3.671 e-03 

1.2985 e-02 

4.4960 e-03 

2.3730 e-03 

Table 5. ARE for problem in Example 4.5 that are compared for various methods
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   2 2

0 0

  ,          ,   .     
t t

xxu x t x sin x t u x d d (4.7)

Therefore we try to solve the Equation (4.7) by MLS method so our operator  is  
0 0

  ,   
t t

xxu u u d d

with the source term 2 2 x sinx t  . In this case we can use the whole initial conditions. By using the same
assumptions of Example 4.1 with  2  , RMS errors are shown in Table 3.

Example 4.4. Consider the following heat equation in two dimensional space,
      ,           0    ,    ,   0,t xx yyu u u x y t     (4.8)

with boundary and initial conditions:

   :      0, ,   , , 0,BC u y t u y t 

     ,0,     , , 0,u x t u x t 

  :       , ,0         . IC u x y sin x sin y

The exact solution of (4.8) respect to the given conditions, is

  2, ,             .tu x y t e sin xsin y

Using the same assumptions of previous Examples with this little difference that in this case we have three

independent variables thus we use polynomials with three variable as basis also 3   and have three
directions x, y and t which respectively g, h and k are the number of partitions. RMS errors which are shown
in Table 4 and Figure 1, demonstrate the accuracy of the MLS method.

Example 4.5. In this example we consider the following partial differential equation which has been
considered in [18]

Fig. 2. The irregular distanced points in Ù for various Ns which are used in MLS method for Example 4.6, boundary points
(green points) and inner points (red points).

Table 6. AE for problem in Example 4.6 which solved by various methods

             method  

Ns                          
93 343 747 

TSF 

MLS,  n = 4 

9.3610 e-03 

1.2385 e-07 

3.9090 e-03 

3.6403 e-08 

4.6700 e-04 

2.4867 e-08 
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        1        1        4 1    1    ,         ,        xx yyx x u y y u xy x y x y       (4.9)

with condition

   ,  0,                                    ,   u x y x y 

where      0,1 0,1 .     The exact solution of (4.6) respect to the given conditions, is

      , 1 1 .u x y xy x y  

We compare our proposed method with the other methods that are mentioned in [18] such as Ordinary
Linear Approximation (OLA) and some radial basis functions methods respect to three radial basis functions,
multi quadric (MQ), Linear Function (LF) and Thin-Plate Spline (TPS).

In [18] for radial basis functions approach, three radial basis functions are considered as follows:

• MQ:    2 2   R r c r  ;

• Linear functions (LF):      ;R r r

• Thin-Plate Spline (TPS):   2      lnR r r r .

ARE for various number of collocation point Ns are shown in Table 5, also in our proposed method MLS
the Ns is the number of inner points in Ns that we approximate the solution  on those points and n=4.

Example 4.6. In this example we consider another problem from [18] and compare the solutions in it
with solutions of proposed MLS method. Let the following linear second order PDE are given

          12 ,        ,     ,  xx yyu u xy x y   (4.10)

with the boundary condition

      ,    0,         ,      ,u x y x y 

Where   2 2,  :  1x y x y     the exact solution of (4.6) respect to the boundary conditions, is

   2 2;    1 .u x y xy x y  

In [18] M. Li et al. use Thin-Plate Spline (TPS) functions as radial basis functions and three nodal densities
with node numbers   93Ns ; 343 and 747. In this example we consider the same number of irregular distanced
nodes as shown in Figure 2. For bivariate polynomials basis functions of degree at most n=4 and various
numbers of Ns, AE are shown in Table 6 and Figure 3.

Fig. 3. Average Errors (AE) for various number of Ns in two methods (a) TSF method (b) MLS method for Example 4.6.
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5. Conclusion

Comparing the proposed MLS method with some other existed methods demonstrate the accuracy and
efficiency of our method. Another advantage of the MLS method is obtaining the approximation of the
solution in any point of the given domain. In practice we often want to know the behavior of a system in some
parts of its domain not on over whole of the domain, in the other words a local approximation of exact solution
can be enough, for this purpose we can use the proposed method only for a given point x to achieve a local
approximation of actual solution around this point. All kinds of linear PDEs can be solved by the proposed
method.
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h. mafikandi*, m. amirfaxriani*

azadis islamuri universiteti, Teiranis centraluri ganyofileba, maTematikis departamenti,
Teirani, irani

(warmodgenilia akademiis wevris v. kokilaSvilis mier)

winamdebare statiaSi ganxilulia wrfivi kerZowarmoebuliani diferencialuri
gantolebebis amoxsnis meTodi, kerZod, siTbosa da talRebis erT an mravalganzomilebian
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